简体   繁体   English

如何在pandas python中用国家名称填充空白国家列

[英]How to fill blank country column with country name in pandas python

I have data frame columns like language, region and country.我有数据框列,如语言、地区和国家。 In that data frame using language column to fill the country with country name.在该数据框中使用语言列用国家/地区名称填充国家/地区。

My input is:我的输入是:

language      region         country

english        a            canada
chinese        b            china
english        a            usa
japanese       a            japan
english        a            usa
portugese      b            portugal
english        a            null    

In above data frame, I want to fill the null country name with by using country names based on count which countries are using English.在上面的数据框中,我想根据使用英语的国家/地区的计数使用国家/地区名称来填充空国家/地区名称。 Let's suppose USA count has 2 and Canada count has 1. So, USA has highest count then we have to fill the USA country name in null place.假设美国计数为 2,加拿大计数为 1。因此,美国计数最高,那么我们必须在空位置填写美国国家/地区名称。

Required output should be:所需的输出应该是:

language      region         country

english        a            canada
chinese        b            china
english        a            usa
japanese       a            japan
english        a            usa
portugese      b            portugal
english        a            usa

For above required output I used below code snippet.对于上面所需的输出,我使用了下面的代码片段。 But it is not working.但它不起作用。 Can anyone help me for above required output data frame.任何人都可以帮助我获得上述所需的输出数据框。

df.loc[df['language']=='english' & df['region']='ap' & df['country'].value_counts()[df['country'].value_counts() == df['country'].value_counts().max()]

In above code snippet i must need to be use df.loc[df['language']=='english' & df['region']='ap'.after that i have to find highest country count based on AP region and fill blank country as with highest country count country.在上面的代码片段中,我必须使用 df.loc[df['language']=='english' & df['region']='ap'.after 之后我必须根据 AP 区域找到最高的国家/地区数并填写空白国家作为最高国家计数国家。

Assume your null is NaN or None .假设您的nullNaNNone If it is string null , You need pre-process it to NaN如果它是 string null ,则需要将其预处理为NaN

df = df.where(df.ne('null')) # doing this step if your `null` is string `null`

m = df.country.isna()
m1 = df.language.eq('english')

df.loc[m & m1, 'country'] = df.loc[m1, 'country'].mode()[0]

Out[194]:
    language region   country
0    english      a    canada
1    chinese      b     china
2    english      a       usa
3   japanese      a     japan
4    english      a       usa
5  portugese      b  portugal
6    english      a       usa

A more generalized solution would be to map and fillna更通用的解决方案是mapfillna

d = df.groupby('language').country.apply(lambda s: s.mode()[0]).to_dict() 
df['country'] = df.country.fillna(df.language.map(d))

    language region   country
0    english      a    canada
1    chinese      b     china
2    english      a       usa
3   japanese      a     japan
4    english      a       usa
5  portugese      b  portugal
6    english      a       usa

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2025 STACKOOM.COM