[英]r Group by and count
我正在处理如下数据集
Id Date Color
10 2008-11-17 Red
10 2008-11-17 Red
10 2008-11-17 Blue
10 2010-01-26 Red
10 2010-01-26 Green
10 2010-01-26 Green
10 2010-01-26 Red
29 2007-07-31 Red
29 2007-07-31 Red
29 2007-07-31 Blue
29 2007-07-31 Green
29 2007-07-31 Red
我的目标是创建这样的数据集
Color Representation Count Min Max
Red 1 + 1 + 1 = 3 2 + 2 + 3 = 7 2 3
Blue 1 + 1 = 2 1 + 1 1 1
Green 1 + 1 = 2 2 + 1 1 2
表示
在1行的值,第2列(代表),是3,因为红色是基于ID和日期的独特组合来表示三次。 例如,1 次和第 2 点的行是相同的,ID(10)和日期(2008-11-17),以便该组合被表示一次(1(10,2008-11-17))。 第 4 次和第 7 次的行是相同的ID(10)和日期(2010-01-26)组合,因此这种独特的组合,被表示一次(1(10,2010-01-26))。 第 8, 第 9, 第 12是ID(29)和日期(2007-07-31)的相同的组合和类似此被表示一次(1(29,2007-07-31))。 因此,第1行第2列的值为3。
1 (10,2008-11-17) + 1 (10,2010-10-26) + 1 (29,2007-07-31) = 3
计数
在1行,第3列(计数),该值是7,因为红色提到两次通过ID 10
上2008-11-17
(2 10,2008-11-17),再次红两次提到的ID 10
上2010-01-26
(2 10,2010-01-26)和三次用ID 29
上2007-07-31
2 29,2007-07-31
2 (10,2008-11-17) + 2 (10,2010-10-26) + 3 (29,2007-07-31)
任何帮助完成这个独特的频率/计数表非常感谢。
数据集
Id = c(10,10,10,10,10,10,10,29,29,29,29,29)
Date = c("2008-11-17", "2008-11-17", "2008-11-17","2010-01-26","2010-01-26","2010-01-26","2010-01-26",
"2007-07-31","2007-07-31","2007-07-31","2007-07-31","2007-07-31")
Color = c("Red", "Red", "Blue", "Red", "Green", "Green", "Red", "Red", "Red", "Blue", "Green", "Red")
df = data.frame(Id, Date, Color)
使用dplyr
:
library(dplyr)
dat %>% group_by(Color) %>%
summarize(Representation = n_distinct(Id, Date), Count = n())
# # A tibble: 3 × 3
# Color Representation Count
# <fctr> <int> <int>
# 1 Blue 2 2
# 2 Green 2 3
# 3 Red 3 7
您可以使用aggregate()
函数:
# Make a new column for the Date-Id joined (what you want to base the counts on
df$DateId <- paste(df$Date, df$Id)
# Get the representation values
Representation <- aggregate(DateId ~ Color, data=df,FUN=function(x){length(unique(x))})
Representation
#> Color DateId
#> 1 Blue 2
#> 2 Green 2
#> 3 Red 3
# Get the Count values
Count <- aggregate(DateId ~ Color, data=df,FUN=length)
Count
#> Color DateId
#> 1 Blue 2
#> 2 Green 3
#> 3 Red 7
另一种选择是data.table
library(data.table)
setDT(df)[, .(Representation = uniqueN(paste(Id, Date)), Count = .N) , by = Color]
# Color Representation Count
#1: Red 3 7
#2: Blue 2 2
#3: Green 2 3
对于第二个问题,我们可以尝试
library(matrixStats)
m1 <- sapply(split(df[["Color"]], list(df$Id, df$Date), drop = TRUE), function(x) table(x))
v1 <- (NA^!m1) * m1
df1 <- data.frame(Color = row.names(m1), Representation = rowSums(m1!=0),
Count = rowSums(m1), Min = rowMins(v1, na.rm=TRUE),
Max = rowMaxs(v1, na.rm=TRUE))
row.names(df1) <- NULL
df1
# Color Representation Count Min Max
#1 Blue 2 2 1 1
#2 Green 2 3 1 2
#3 Red 3 7 2 3
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.