繁体   English   中英

Python:如何根据第一列中的值将Pandas DataFrame分为子集?

[英]Python: how to split pandas DataFrame into subsets based on the value in the first column?

我有一个实验的大日志文件(.txt)(最多包含10万个条目),其结构如下:

ROUTINE    TEMPERATURE    VOLTAGE    WAVELENGTH
_______________________________________________
CHANGE T   75             0          560
CHANGE T   80             0          560
CHANGE T   85             0          560
CHANGE T   90             0          560
OSL        75             20         570
OSL        75             20         580
OSL        75             20         590
OSL        75             20         600
CHANGE T   75             0          560
CHANGE T   80             0          560
CHANGE T   85             0          560
CHANGE T   90             0          560

我使用read_table熊猫日志文件加载到蟒蛇。 我想根据第一列的值将结果数据框划分为较小的数据框。 因此结果将如下所示:

**DATAFRAME 1:**    
CHANGE T   75             0          560
CHANGE T   80             0          560
CHANGE T   85             0          560
CHANGE T   90             0          560

**DATAFRAME 2:** 
OSL        75             20         570
OSL        75             20         580
OSL        75             20         590
OSL        75             20         600

**DATAFRAME 3:** 
CHANGE T   75             0          560
CHANGE T   80             0          560
CHANGE T   85             0          560
CHANGE T   90             0          560

首先,我尝试使用第一列的值更改的索引来拆分它们:

indexSplit = [] # list containing the boundry indices

prevRoutine = log['ROUTINE'][0] # log is the complete dataframe
i = 1
while i < len(log):
        if prevRoutine != log['ROUTINE'][i]:
            indexSplit.append(i)
        prevRoutine = log['ROUTINE'][i]

但是,考虑到日志文件的大小,以这种方式(显然)要花费大量时间。 我想知道是否有一种优雅的方法可以对付熊猫? 我一直遇到的问题是第一列的值在多个序列中使用。 我总是以数据帧1数据帧3结束。

您可以使用list comprehension ,其中循环groupby对象和groupss创建。 目前比较受ne (相同!=但速度更快) shift编列,并通过cumsum得到的输出:

s = df['ROUTINE'].ne(df['ROUTINE'].shift()).cumsum()
print (s)
0     1
1     1
2     1
3     1
4     2
5     2
6     2
7     2
8     3
9     3
10    3
11    3
Name: ROUTINE, dtype: int32

dfs = [g for i,g in df.groupby(df['ROUTINE'].ne(df['ROUTINE'].shift()).cumsum())]
print (dfs)
[    ROUTINE  TEMPERATURE  VOLTAGE  WAVELENGTH
0  CHANGE T           75        0         560
1  CHANGE T           80        0         560
2  CHANGE T           85        0         560
3  CHANGE T           90        0         560,   ROUTINE  TEMPERATURE  VOLTAGE  WAVELENGTH
4     OSL           75       20         570
5     OSL           75       20         580
6     OSL           75       20         590
7     OSL           75       20         600,      ROUTINE  TEMPERATURE  VOLTAGE  WAVELENGTH
8   CHANGE T           75        0         560
9   CHANGE T           80        0         560
10  CHANGE T           85        0         560
11  CHANGE T           90        0         560]

print (dfs[0])
    ROUTINE  TEMPERATURE  VOLTAGE  WAVELENGTH
0  CHANGE T           75        0         560
1  CHANGE T           80        0         560
2  CHANGE T           85        0         560
3  CHANGE T           90        0         560

print (dfs[1])
  ROUTINE  TEMPERATURE  VOLTAGE  WAVELENGTH
4     OSL           75       20         570
5     OSL           75       20         580
6     OSL           75       20         590
7     OSL           75       20         600

print (dfs[2])
     ROUTINE  TEMPERATURE  VOLTAGE  WAVELENGTH
8   CHANGE T           75        0         560
9   CHANGE T           80        0         560
10  CHANGE T           85        0         560
11  CHANGE T           90        0         560

解决方案很复杂,因为如果仅在第一列中使用groupby ,则仅获得2组:

dfs = [g for i,g in df.groupby('ROUTINE')]
print (dfs)
[     ROUTINE  TEMPERATURE  VOLTAGE  WAVELENGTH
0   CHANGE T           75        0         560
1   CHANGE T           80        0         560
2   CHANGE T           85        0         560
3   CHANGE T           90        0         560
8   CHANGE T           75        0         560
9   CHANGE T           80        0         560
10  CHANGE T           85        0         560
11  CHANGE T           90        0         560,   ROUTINE  TEMPERATURE  VOLTAGE  WAVELENGTH
4     OSL           75       20         570
5     OSL           75       20         580
6     OSL           75       20         590
7     OSL           75       20         600]

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2025 STACKOOM.COM