繁体   English   中英

将树的编译时转换为元组

[英]Compiletime transform of tree into tuple

我遇到了以下问题:

给定一棵树,该树由Node<>类型的非终端节点和任意类型(如AB等)的终端节点表示(请参见下文)。

因为我不想使用运行时多态,所以我喜欢通过constexpr函数将树转换为std::tuple ,例如下面示例中立即调用的lambda表达式。

struct A {};
struct B {};
struct C {};
struct D {};
struct E {};

template<typename... T>
struct Node {
    constexpr Node(const T&... n) : mChildren{n...} {}
    std::tuple<T...> mChildren;
};

template<uint8_t N>
struct IndexNode {
    std::array<uint8_t, N> mChildren;
};

int main() {
    constexpr auto tree = []() {
        auto t = Node(A(), 
                       B(), 
                       Node(C(),
                            Node(D())), 
                       E());    

        // transform t into std::tuple<A, B, C, D, IndexNode<1>{3}, IndexNode<2>{2, 4}, E, IndexNode<4>{0, 1, 5, 6}>

        // return ...;        
    }();

}

这个想法是使用元组元素的索引作为树的活动(选定)节点的“指针”。 总体目的是在不使用运行时多态的情况下在µC上实现菜单系统。

如果可以在编译时执行此转换,则可以使用特殊的元函数来检索活动的元组元素并在其上调用一些函数。 我已经写了这个函数。

丢失的链接肯定是某种深度优先的树遍历...但是我无法弄清楚。

如何使用大量std::tuple_catstd::index_sequence和递归如下所示?

#include <tuple>
#include <array>
#include <iostream>

struct A {};
struct B {};
struct C {};
struct D {};
struct E {};

template <typename... T>
struct Node
 {
   constexpr Node (T const & ... n) : mChildren { n... }
    { }

   std::tuple<T...> mChildren;
 };

template <std::size_t N>
struct IndexNode
 { std::array<uint8_t, N> mChildren; };

template <typename>
struct cntT : public std::integral_constant<std::size_t, 1U>
 { };

template <typename ... Ts>
struct cntT<Node<Ts...>>
   : public std::integral_constant<std::size_t, 1U + (cntT<Ts>::value + ...)>
 { };

template <typename T>
struct getT
 {
   constexpr auto operator() (T const & t, std::size_t & cnt)
    { ++cnt; return std::make_tuple(t); }
 };

template <typename ... Ts>
struct getT<Node<Ts...>>
 {
   template <std::size_t ... Is>
   constexpr auto func (std::tuple<Ts...> const & t,
                        std::index_sequence<Is...> const &,
                        std::size_t & cnt)
    {
      std::size_t val { cnt };

      IndexNode<sizeof...(Ts)> in
          { { { uint8_t(val += cntT<Ts>::value)... } } };

      return std::tuple_cat(getT<Ts>()(std::get<Is>(t), cnt)...,
                            std::make_tuple(in));
    }

   constexpr auto operator() (Node<Ts...> const & n, std::size_t & cnt)
    {
      return func(n.mChildren, std::make_index_sequence<sizeof...(Ts)>{},
                  cnt);
    }
 };

template <typename ... Ts>
constexpr auto linearNode (Node<Ts...> const & n)
 { 
   std::size_t cnt ( -1 );

   return getT<Node<Ts...>>()(n, cnt);
 }

int main()
 {  
   constexpr auto tree = []()
    {
      auto t = Node { A{}, B{}, Node{ C{}, Node{ D{} } }, E{} };

      return linearNode(t);
    }();

   static_assert( std::is_same<
      decltype(tree),
      std::tuple<A, B, C, D, IndexNode<1>, IndexNode<2>, E,
                 IndexNode<4>> const>::value, "!");

   std::cout << "IndexNode<1> { ";

   for ( auto const & v : std::get<4U>(tree).mChildren )
      std::cout << int(v) << ", ";

   std::cout << "}" << std::endl; // print IndexNode<1> { 3, }

   std::cout << "IndexNode<2> { ";

   for ( auto const & v : std::get<5U>(tree).mChildren )
      std::cout << int(v) << ", ";

   std::cout << "}" << std::endl; // print IndexNode<2> { 2, 4, }

   std::cout << "IndexNode<4> { ";

   for ( auto const & v : std::get<7U>(tree).mChildren )
      std::cout << int(v) << ", ";

   std::cout << "}" << std::endl; // print IndexNode<4> { 0, 1, 5, 6, }
 }

@wimalopaan您阅读了max66'的答案,还是找到了您想法的另一个解决方案? 我试图通过索引映射连接输入和输出来解决该问题。 但是,这变得比我预期的要复杂。 这是我尝试建立索引映射的方法:

对于输出元组,显然有索引选择。 交换一下存储顺序(这对我来说更容易想象),索引读取

using Tree = std::tuple<
  IndexNode<4>{1, 2, 3, 7},// 0
    A,                     // 1
    B,                     // 2
    IndexNode<2>{4, 5},    // 3
      C,                   // 4
      IndexNode<1>{6},     // 5
        D,                 // 6
    E                      // 7
>;

输入由嵌套元组组成,因此让我们发明一些多索引:

Node(/* 1, 2, 3, 7 */ // 0, Vals<>
  A{},                // 1, Vals<0>
  B{},                // 2, Vals<1>
  Node(/* 4, 5 */     // 3, Vals<2>
    C{},              // 4, Vals<2, 0>
    Node(/* 6 */      // 5, Vals<2, 1>
      D{}             // 6, Vals<2, 1, 0>
    )
  ),
  E{}                 // 7, Vals<3>
);

为了计算IndexNode的索引,指定“一个节点(包括其子节点)消耗的输出索引数”很有用。 max66的答案中,这称为cntT 让我们在这里使用术语rank表示此数量,并通过函数重载进行计算:

template<class> struct Type {};// helper to pass a type by value (for overloading)

template<class Terminal>
size_t rank_of(Type<Terminal>) {// break depth recursion for terminal node
  return 1;
}

template<class... Children>
size_t rank_of(Type<Node<Children...>>) {// continue recursion for non-terminal node
  return (
    1 +// count enclosing non-terminal node
    ... + rank_of(Type<Children>{})
  );
}

可以应用相同的策略来获取输入表示形式中每个节点的多索引。 多索引被累积(通过深度递归)到ParentInds

#include "indexer.hpp"// helper for the "indices trick"
#include "merge.hpp"// tuple_cat for types
#include "types.hpp"// template<class...> struct Types {};
#include "vals.hpp"// helper wrapped around std::integer_sequence

template<class Terminal, class ParentInds=Vals<>>
auto indices_of(
  Type<Terminal>,// break depth recursion for terminal node
  ParentInds = ParentInds{}
) {
  std::cout << __PRETTY_FUNCTION__ << std::endl;
  return Types<ParentInds>{};// wrap in Types<...> for simple merging
}

template<class... Children, class ParentInds=Vals<>>
auto indices_of(
  Type<Node<Children...>>,// continue recursion for non-terminal node
  ParentInds parent_inds = ParentInds{}
) {
  return indexer<Children...>([&] (auto... child_inds) {
    return merge(
      Types<ParentInds>{},// indices for enclosing non-terminal node
      indices_of(
        Type<Children>{},
        parent_inds.append(child_inds)
      )...
    );
  });
}

使用GCC 7.2的输出:

auto indices_of(Type<Terminal>, ParentInds) [with Terminal = E; ParentInds = Vals<3>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = D; ParentInds = Vals<2, 1, 0>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = C; ParentInds = Vals<2, 0>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = B; ParentInds = Vals<1>]
auto indices_of(Type<Terminal>, ParentInds) [with Terminal = A; ParentInds = Vals<0>]

通过使用indices_of计算的索引映射,我们可以构建输出元组,如下所示:

template<class T>
constexpr auto transform(const T& t) {
  static_assert(
    std::is_same<
      T,
      Node<A, B, Node<C, Node<D> >, E>
    >{}
  );

  auto inds = indices_of(Type<T>{});

  static_assert(
    std::is_same<
      decltype(inds),
      Types<
        Vals<>,
          Vals<0>,
          Vals<1>,
          Vals<2>,
            Vals<2, 0>,
            Vals<2, 1>,
              Vals<2, 1, 0>,
          Vals<3>
      >
    >{}
  );

  return indexer(inds.size, [&] (auto... is) {// `is` are the tuple's output inds
    return std::make_tuple(// becomes the final output tuple
      transform_at(
        inds.construct_type_at(is),// multiindex `Vals<...>{}` for each tuple element
        t,// input tree
        is.next()// used by each `IndexNode`: offset for its index computation
      )...
    );
  });
}

这是一个完整的 (希望没有错误)工作示例( 在线演示 ):

#include <algorithm>
#include <iostream>
#include <tuple>
#include <numeric>

////////////////////////////////////////////////////////////////////////////////

template<size_t i>
struct Val : std::integral_constant<size_t, i> {
  template<size_t dist=1>
  constexpr auto next(Val<dist> = {}) {
    return Val<i+dist>{};
  }
};

template<size_t... is>
struct Vals {
  template<size_t i>
  constexpr auto append(Val<i>) {
    return Vals<is..., i>{};
  }
};

template<size_t i0, size_t... is>
constexpr auto front(Vals<i0, is...>) { return Val<i0>{}; }

template<size_t i0, size_t... is>
constexpr auto pop_front(Vals<i0, is...>) { return Vals<is...>{}; }

////////////////////////////////////////////////////////////////////////////////

template<class> struct Type {};

template<class... Ts>
struct Types {
  static constexpr auto size = Val<sizeof...(Ts)>{};

  template<std::size_t i, class... Args>
  constexpr auto construct_type_at(Val<i>, Args&&... args) {
    using Ret = std::tuple_element_t<i, std::tuple<Ts...>>;
    return Ret(std::forward<Args>(args)...);
  }
};

////////////////////////////////////////////////////////////////////////////////

template<std::size_t... is, class F>
constexpr decltype(auto) indexer_impl(std::index_sequence<is...>, F f) {
  return f(Val<is>{}...);
}

template<class... Ts, class F>
constexpr decltype(auto) indexer(F f) {
  return indexer_impl(std::index_sequence_for<Ts...>{}, f);
}

template<size_t N, class F>
constexpr decltype(auto) indexer(std::integral_constant<size_t, N>, F f) {
  return indexer_impl(std::make_index_sequence<N>{}, f);
}

////////////////////////////////////////////////////////////////////////////////

template<class... Ts>
auto merge(Types<Ts...> done) {
  return done;
}

template<class... Ts, class... Us, class... Vs>
auto merge(Types<Ts...>, Types<Us...>, Vs...) {
// TODO: if desired, switch to logarithmic recursion
// https://stackoverflow.com/a/46934308/2615118
  return merge(Types<Ts..., Us...>{}, Vs{}...);
}

////////////////////////////////////////////////////////////////////////////////

struct TerminalNode { const char* msg{""}; };// JUST FOR DEBUG

std::ostream& operator<<(std::ostream& os, const TerminalNode& tn) {
  return os << tn.msg << std::endl;// JUST FOR DEBUG
}

struct A : TerminalNode {};// INHERITANCE JUST FOR DEBUG
struct B : TerminalNode {};
struct C : TerminalNode {};
struct D : TerminalNode {};
struct E : TerminalNode {};

template<typename... T>
struct Node {
  constexpr Node(const T&... n) : mChildren{n...} {}
  std::tuple<T...> mChildren;
};

template<size_t N>
struct IndexNode {
  std::array<size_t, N> mChildren;
  constexpr IndexNode(std::array<size_t, N> arr) : mChildren(arr) {}

  friend std::ostream& operator<<(std::ostream& os, const IndexNode& self) {
    for(auto r : self.mChildren) os << r << ", ";// JUST FOR DEBUG
    return os << "\n";
  }
};

////////////////////////////////////////////////////////////////////////////////

template<class Terminal>
size_t rank_of(
  Type<Terminal>// break depth recursion for terminal node
) {
  return 1;
}
template<class... Children>
size_t rank_of(
  Type<Node<Children...>>// continue recursion for non-terminal node
) {
  return (
    1 +// count enclosing non-terminal node
    ... + rank_of(Type<Children>{})
  );
}

////////////////////////////////////////////////////////////////////////////////

template<class Terminal, class ParentInds=Vals<>>
auto indices_of(
  Type<Terminal>,// break depth recursion for terminal node
  ParentInds = ParentInds{}
) {
  std::cout << __PRETTY_FUNCTION__ << std::endl;
  return Types<ParentInds>{};// wrap in Types<...> for simple merging
}
template<class... Children, class ParentInds=Vals<>>
auto indices_of(
  Type<Node<Children...>>,// continue recursion for non-terminal node
  ParentInds parent_inds = ParentInds{}
) {
  return indexer<Children...>([&] (auto... child_inds) {
    return merge(
      Types<ParentInds>{},// indices for enclosing non-terminal node
      indices_of(
        Type<Children>{},
        parent_inds.append(child_inds)
      )...
    );
  });
}

////////////////////////////////////////////////////////////////////////////////

template<class It, class T>
constexpr It exclusive_scan(It first, It last, It out, T init) {
  for(auto it=first; it!=last; ++it) {
    auto in = *it;
    *out++ = init;
    init += in;
  }
  return out;
}

////////////////////////////////////////////////////////////////////////////////

template<size_t... child_inds, class Terminal, class Offset>
constexpr decltype(auto) transform_at(
  Vals<child_inds...> inds,
  const Terminal& terminal,
  Offset
) {
  static_assert(0 == sizeof...(child_inds));
  return terminal;
}

template<size_t... child_inds, class... Children, class Offset>
constexpr decltype(auto) transform_at(
  Vals<child_inds...> inds,
  const Node<Children...>& node,
  Offset offset = Offset{}
) {
  if constexpr(0 == sizeof...(child_inds)) {// the IndexNode is desired
    auto ranks = std::array{rank_of(Type<Children>{})...};
    exclusive_scan(std::begin(ranks), std::end(ranks), std::begin(ranks), 0);

    auto add_offset = [] (size_t& i) { i += Offset{}; };
    std::for_each(std::begin(ranks), std::end(ranks), add_offset);

    return IndexNode{ranks};
  }
  else {// some child of this enclosing node is desired
    return transform_at(
      pop_front(inds),
      std::get<front(inds)>(node.mChildren),
      offset
    );
  }
}

template<class T>
constexpr auto transform(const T& t) {
  auto inds = indices_of(Type<T>{});

  return indexer(inds.size, [&] (auto... is) {// is are the tuple output inds
    return std::make_tuple(// becomes the final output tuple
      transform_at(
        inds.construct_type_at(is),// multiindex for each tuple element
        t,// input tree
        is.next()// used by each `IndexNode`: offset for its index computation
      )...
    );
  });
}

////////////////////////////////////////////////////////////////////////////////

int main() {
  auto tree = []() {
    auto t = Node(    // 0, Val<>
      A{"FROM A"},    // 1, Val<0>
      B{"FROM B"},    // 2, Val<1>
      Node(           // 3, Val<2>
        C{"FROM C"},  // 4, Val<2, 0>
        Node(         // 5, Val<2, 1>
          D{"FROM D"} // 6, Val<2, 1, 0>
        )
      ),
      E{"FROM E"}     // 7, Val<3>
    );

    return transform(t);
  }();

  using Tree = decltype(tree);

  indexer(std::tuple_size<Tree>{}, [&] (auto... is) {
    (std::cout << ... << std::get<is>(tree));
  });

  return 0;
}

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM