[英]Merge two columns into one within the same data frame in pandas/python
我有一个问题要在同一个数据帧(start_end)中将两列合并为一列,还要删除空值。 我打算将“起点站”和“终点站”合并到“站”中,并根据新的“站”列保留“持续时间”。 我尝试过 pd.merge、pd.concat、pd.append,但我无法解决。
Start_end 的数据帧:
Duration End station Start station
14 1407 NaN 14th & V St NW
19 509 NaN 21st & I St NW
20 638 15th & P St NW. NaN
27 1532 NaN Massachusetts Ave & Dupont Circle NW
28 759 NaN Adams Mill & Columbia Rd NW
预期输出:
Duration stations
14 1407 14th & V St NW
19 509 21st & I St NW
20 638 15th & P St NW
27 1532 Massachusetts Ave & Dupont Circle NW
28 759 Adams Mill & Columbia Rd NW
我到目前为止的代码:
#start_end is the dataframe, 'start station', 'end station', 'duration'
start_end = pd.concat([df_start, df_end])
这就是我试图做的:
station = pd.merge([start_end['Start station'],start_end['End station']])
fillna
如果NaN
真的是空值
df.assign(**{
'Start station': df['Start station'].fillna(df['End station'])})
Duration End station Start station
14 1407 NaN 14th & V St NW
19 509 NaN 21st & I St NW
20 638 15th & P St NW. 15th & P St NW.
27 1532 NaN Massachusetts Ave & Dupont Circle NW
28 759 NaN Adams Mill & Columbia Rd NW
mask
如果NaN
是字符串
df.assign(**{
'Start station': df['Start station'].mask(
lambda x: x == 'NaN', df['End station'])})
Duration End station Start station
14 1407 NaN 14th & V St NW
19 509 NaN 21st & I St NW
20 638 15th & P St NW. 15th & P St NW.
27 1532 NaN Massachusetts Ave & Dupont Circle NW
28 759 NaN Adams Mill & Columbia Rd NW
>>> df
Duration End station Start station
0 1407 NaN 14th & V St NW
1 509 NaN 21st & I St NW
2 638 15th & P St NW. NaN
3 1532 NaN Massachusetts Ave & Dupont Circle NW
4 759 NaN Adams Mill & Columbia Rd NW
为两列指定相同的名称
>>> df.columns = df.columns.str.replace('.*?station', 'station')
>>> df
Duration station station
0 1407 NaN 14th & V St NW
1 509 NaN 21st & I St NW
2 638 15th & P St NW. NaN
3 1532 NaN Massachusetts Ave & Dupont Circle NW
4 759 NaN Adams Mill & Columbia Rd NW
堆叠然后取消堆叠。
>>> s = df.stack()
>>> s
0 Duration 1407
station 14th & V St NW
1 Duration 509
station 21st & I St NW
2 Duration 638
station 15th & P St NW.
3 Duration 1532
station Massachusetts Ave & Dupont Circle NW
4 Duration 759
station Adams Mill & Columbia Rd NW
dtype: object
>>> df = s.unstack()
>>> df
Duration station
0 1407 14th & V St NW
1 509 21st & I St NW
2 638 15th & P St NW.
3 1532 Massachusetts Ave & Dupont Circle NW
4 759 Adams Mill & Columbia Rd NW
>>>
这就是我认为的工作方式:
.stack
创建一个带有.stack
的系列并为您处理空值。 它在列名上对齐第二级,因为列名相同,所以只有一个 - 取消堆叠只会产生一个列。
如果您不更改列名,那实际上只是基于索引之间差异的猜测。
>>> # without changing column names
>>> s.index
MultiIndex(levels=[[0, 1, 2, 3, 4], ['Duration', 'End station', 'Start station']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3, 4, 4], [0, 2, 0, 2, 0, 1, 0, 2, 0, 2]])
>>> # column names the same
>>> s.index
MultiIndex(levels=[[0, 1, 2, 3, 4], ['Duration', 'station']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3, 4, 4], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]])
看起来有点棘手,也许有人会评论它。
替代方案 - 使用pd.concat
和.dropna
>>> stations = pd.concat([df.iloc[:,1],df.iloc[:,2]]).dropna()
>>> stations.name = 'stations'
>>> stations
2 15th & P St NW.
0 14th & V St NW
1 21st & I St NW
3 Massachusetts Ave & Dupont Circle NW
4 Adams Mill & Columbia Rd NW
Name: stations, dtype: object
>>> df2 = pd.concat([df['Duration'], stations], axis=1)
>>> df2
Duration stations
0 1407 14th & V St NW
1 509 21st & I St NW
2 638 15th & P St NW.
3 1532 Massachusetts Ave & Dupont Circle NW
4 759 Adams Mill & Columbia Rd NW
使用combine_first
。 用col2
替换 col1 中的空值
df["station"] = df["End station"].combine_first(df["Start station"])
df.drop(["End station", "Start station"], 1, inplace=True)
使用ffill
df.iloc[:,2:4]=df.iloc[:,2:4].ffill(1)
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.