[英]Rename levels using wildcard matching in r
是否可以在R中使用通配符匹配来替换级别?
我有一列名为“年经验值"0 YEAR, 9 MONTHS"
的列,分别为"0 YEAR, 9 MONTHS"
, "1 YEAR, 0 MONTHS"
, "1 YEAR, 1 MONTHS"
, "1 YEAR, 10 MONTHS"
, "1 YEAR, 9 MONTHS"
, "10 YEAR, 0 MONTHS"
, "10 YEAR, 1 MONTHS"
, "10 YEAR, 10 MONTHS"
,同样接近600个级别; 我希望将所有的"0 YEAR...
为"<1"
,将1 YEAR
为"1"
,将超过5 YEAR
为">5"
,总共给出5个级别。
grep("9 YEAR", data$Service, ignore.case = TRUE, value = TRUE)
尝试mutate
,我无法精确缩小每个级别,我希望最终只能获得5或6个级别。
首先让我们生成一些随机样本数据
set.seed(2018)
x <- factor(paste(sample(0:10, 10, replace = T), "YEAR,", sample(0:11, 10, replace = T), "MONTHS"))
df <- data.frame(years_of_experience = x)
# years_of_experience
#1 3 YEAR, 4 MONTHS
#2 5 YEAR, 7 MONTHS
#3 0 YEAR, 11 MONTHS
#4 2 YEAR, 8 MONTHS
#5 5 YEAR, 9 MONTHS
#6 3 YEAR, 7 MONTHS
#7 6 YEAR, 3 MONTHS
#8 1 YEAR, 6 MONTHS
#9 10 YEAR, 8 MONTHS
#10 6 YEAR, 9 MONTHS
然后我们可以使用years_of_experience
根据case_when
对years_of_experience
进行分类
df.new <- df %>%
mutate(
yr = as.numeric(gsub(" YEAR.*$", "", x)),
bucket = case_when(
yr < 1 ~ "<1",
yr >= 5 ~ ">=5",
TRUE ~ as.character(yr)))
df.new
# years_of_experience yr bucket
#1 3 YEAR, 4 MONTHS 3 3
#2 5 YEAR, 7 MONTHS 5 >=5
#3 0 YEAR, 11 MONTHS 0 <1
#4 2 YEAR, 8 MONTHS 2 2
#5 5 YEAR, 9 MONTHS 5 >=5
#6 3 YEAR, 7 MONTHS 3 3
#7 6 YEAR, 3 MONTHS 6 >=5
#8 1 YEAR, 6 MONTHS 1 1
#9 10 YEAR, 8 MONTHS 10 >=5
#10 6 YEAR, 9 MONTHS 6 >=5
我们可以将df.new$bucket
转换df.new$bucket
具有5个级别的factor
df.new %>% mutate(bucket = as.factor(bucket)) %>% pull(bucket)
# [1] 3 >=5 <1 2 >=5 3 >=5 1 >=5 >=5
#Levels: <1 >=5 1 2 3
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.