[英]Pandas - groupby index as column
使用这些数据
DATETIME_ADDED ACTION_ID USECASE_WIDGET_ID QUERY_ORDER_BY BROWSER_IP REQUEST_IP QUERY_RAW_PHRASE LOG_TIME ITEM_COUNT
0 2020-02-06 13:15:02 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 533 67908
1 2020-02-06 13:00:02 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 521 67908
2 2020-02-06 12:45:02 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 488 67908
3 2020-02-06 12:30:02 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 506 67908
4 2020-02-06 12:15:02 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 499 67907
... ... ... ... ... ... ... ... ... ...
5552 2019-12-10 17:14:02 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 470 66935
5553 2019-12-10 17:08:02 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 493 66935
5554 2019-12-10 17:01:55 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 443 66935
5555 2019-12-10 16:58:15 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 465 66935
5556 2019-12-10 16:56:45 /search katalog/lista_produktow 1000011 x.x.x.x x.x.x.x kabel 423 66935
从 csv 文件导入我已经创建了这个。
df = pd.read_csv("/mnt/c/_KOD_/github/jupyter/Czasy_wyszukiwarki.csv", delimiter=";", encoding="UTF-8")
raw_data = pd.read_csv("/mnt/c/_KOD_/github/jupyter/Czasy_wyszukiwarki.csv", delimiter=";", encoding="UTF-8")
df = df.drop(columns=['ACTION_ID','USECASE_WIDGET_ID','QUERY_ORDER_BY','BROWSER_IP','REQUEST_IP','QUERY_RAW_PHRASE'])
new = df["DATETIME_ADDED"].str.split(' ',n=1, expand=True)
df['DATE']= new[0]
df['TIME']= new[1]
df2 = df.drop(columns=['DATETIME_ADDED'])
df3 = df2.groupby(['DATE']).agg(
min_logtime=('LOG_TIME',min),
max_logtime=('LOG_TIME',max),
mean_logtime=('LOG_TIME',"mean")
)
fig = px.line(df3, x="DATE", y='min_logtime', title='Search time')
fig.show()
df3 中的数据如下所示
min_logtime max_logtime mean_logtime
DATE
2019-12-10 406 493 453.419355
2019-12-11 392 547 463.265306
2019-12-12 411 570 468.583333
现在我遇到了如何将索引数据转换为普通列的问题,以便我可以将其用作 X 轴。
@Zaraki Kenpachi 提供的答案解决了我的问题
df3.reset_index()
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.