[英]Change the value of a column into a nan based on the value of another column inside a loop
我有大量带有后缀“平均值”或“总和”的列。 有时带有“平均”后缀的是NaN。 发生这种情况时,我也想将带有“sum”后缀的那个也变成 NaN。 我有大量变量,所以我需要 (?) 使用循环。 我已经创建了一个假的 dataframe 并且我已经添加了基于 SO 中类似帖子尝试过的 3 件事。 不幸的是,没有任何效果
original_data_set = (pd.DataFrame
(
{
'customerId':[1,2]
,'usage_1_sum':[100, 200]
,'usage_1_mean':[np.nan,100]
,'usage_2_sum':[420,330]
,'usage_2_mean':[45,np.nan]
}
)
)
print('original dataset')
original_data_set
desired_data_set = (pd.DataFrame
(
{
'customerId':[1,2]
,'usage_1_sum':[np.nan, 200]
,'usage_1_mean':[np.nan,100]
,'usage_2_sum':[420,np.nan]
,'usage_2_mean':[45,np.nan]
}
)
)
print('desired dataset')
desired_data_set
holder_set = original_data_set.copy()
for number in range(1,3):
holder_set['usage_{}_sum'.format(number)] = (
holder_set['usage_{}_sum'.format(number)]
.where(holder_set['usage_{}_mean'.format(number)] == np.nan, np.nan
)
)
print('using an np.where statement changed all sum variables into NaN with no discretion')
holder_set
holder_set = original_data_set.copy()
for number in range(1,3):
conditions = [holder_set['usage_{}_mean'.format(number)]==np.nan]
outcome = [np.nan]
holder_set['usage_{}_sum'.format(number)] = np.select(conditions, outcome, default=holder_set['usage_{}_sum'.format(number)])
print('using an np.select did not have any effect on the dataframe')
holder_set
holder_set = original_data_set.copy()
for number in range(1,3):
holder_set.loc[holder_set['usage_{}_mean'.format(number)]==np.nan, 'usage_{}_sum'.format(number)] = 12
print('using a loc did not have any effect on the dataframe')
holder_set
假设original
dataframe 为df
:
df = pd.DataFrame({'customerId': [1, 2], 'usage_1_sum': [100, 200], 'usage_1_mean': [
np.nan, 100], 'usage_2_sum': [420, 330], 'usage_2_mean': [45, np.nan]})
使用Series.str.endswith
过滤以_mean
结尾的列,然后对于以 _mean 结尾的列中的每一列,将_mean
列中的相应值_sum
为NaN
,其中 mean 列中的值为NaN
:
for col in df.columns[df.columns.str.endswith('_mean')]:
df.loc[df[col].isna(), col.rstrip('_mean') + '_sum'] = np.nan
结果:
# print(df)
customerId usage_1_sum usage_1_mean usage_2_sum usage_2_mean
0 1 NaN NaN 420.0 45.0
1 2 200.0 100.0 NaN NaN
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.