[英]TypeError and ValueError in algorithm for Newton's Method to gradient descent with backtracking
我正在尝试将牛顿法应用于带有回溯的梯度下降算法。
import numpy as np
from scipy import optimize as opt
def newton_gd_backtracking(w,itmax,tol):
# You may set bounds of "learnrate"
max_learnrate =0.1
min_learnrate =0.001
for i in range(itmax):
grad = opt.rosen_der(w)
grad2 = (np.linalg.norm(grad))**2
hess = opt.rosen_hess(w)
# you have to decide "learnrate"
learnrate = max_learnrate
while True:
f0 = opt.rosen(w)
f1 = opt.rosen(w - learnrate * grad)
if f1 <= (f0 - (learnrate/2)*grad2):
break
else:
learnrate /=2;
if learnrate< min_learnrate:
learnrate = min_learnrate; break
# now, Newton's method
deltaw = - learnrate * np.linalg.inv(hess) * grad
w = w + deltaw
if np.linalg.norm(deltaw) < tol:
break
return w, i, learnrate
# You can call the above function, by adding main
if __name__=="__main__":
w0 = np.array([0,0])
itmax = 10000; tol = 1.e-5
w, i, learnrate = newton_gd_backtracking(w0,itmax,tol)
print('Weight: ', w)
print('Iterations: ', i)
print('Learning Rate: ', learnrate)
运行程序后,我收到以下错误消息:
类型错误:只有大小为 1 的数组可以转换为 Python 标量
上述异常是以下异常的直接原因:
回溯(最近一次调用最后一次):
文件“c:/Users/Desfios 5/Desktop/Python/homework submit/Deyeon/GD_BT_Newton/Main_Newton_GD_Backtracking.py”,第43行,在w, i,learnrate = newton_gd_backtracking(w0,itmax,tol)
文件“c:/Users/Desfios 5/Desktop/Python/homework submit/Deyeon/GD_BT_Newton/Main_Newton_GD_Backtracking.py”,第 12 行,在 newton_gd_backtracking hess = opt.rosen_hess(w)
文件“C:\\Users\\Desfios 5\\AppData\\Roaming\\Python\\Python38\\site-packages\\scipy\\optimize\\optimize.py”,第 373 行,位于 Rosen_hess 对角线 [0] = 1200 * x[0]**2 - 400 * x 1 + 2
ValueError:使用序列设置数组元素。
当我在没有 Hessian 的情况下运行它时,作为带有回溯的正常梯度下降,代码工作正常。 这是我用于带回溯的正常梯度下降的代码:
import numpy as np
from scipy import optimize as opt
def gd_backtracking(w,itmax,tol):
# You may set bounds of "learnrate"
max_learnrate =0.1
min_learnrate =0.001
for i in range(itmax):
grad = opt.rosen_der(w)
grad2 = (np.linalg.norm(grad))**2
# you have to decide "learnrate"
learnrate = max_learnrate
while True:
f0 = opt.rosen(w)
f1 = opt.rosen(w - learnrate * grad)
if f1 <= (f0 - (learnrate/2)*grad2):
break
else:
learnrate /=2;
if learnrate< min_learnrate:
learnrate = min_learnrate; break
# now, march
deltaw = - learnrate * grad
w = w + deltaw
if np.linalg.norm(deltaw) < tol:
break
return w, i, learnrate
# You can call the above function, by adding main
if __name__=="__main__":
w0 = np.array([0,0])
itmax = 10000; tol = 1.e-5
w, i, learnrate = gd_backtracking(w0,itmax,tol)
print('Weight: ', w)
print('Iterations: ', i)
print('Learning Rate: ', learnrate)
有什么我不知道的关于 hessian 矩阵的东西吗? 据我了解,opt.rosen_hess 应该像 opt.rosen_der 一样为我们生成一个一维数组。 也许我以错误的方式使用 opt.rose_hess。 我在这里缺少什么?
在一遍遍地工作之后,我意识到了我的错误。 在 newton_gd_backtesting 下,我将逆粗麻布和梯度相乘。 这些不是标量,所以我应该做点积。 一旦我使用点积,我就得到了想要的结果。
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.