繁体   English   中英

使用 python 包装器并行化 python 脚本

[英]Parallelizing python script with a python wrapper

我有一个 python 脚本heavy_lifting.py ,我使用从 bash 包装器脚本wrapper.sh调用的 GNU Parallel 对其进行了并行化。 我用它来处理 fastq 格式的文件,请参见下面的example.fastq 虽然这可行,但要求使用两个解释器和一组依赖项是不优雅的。 我想使用 python 重写 bash 包装脚本,同时实现相同的并行化。

example.fastq这是需要处理的输入文件的示例。 这个输入文件通常很长(~500,000,000)行。

@SRR6750041.1 1/1
CTGGANAAGTGAAATAATATAAATTTTTCCACTATTGAATAAAAGCAACTTAAATTTTCTAAGTCG
+
AAAAA#EEEEEEEEEEEEEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEA<AAEEEEE<6
@SRR6750041.2 2/1
CTATANTATTCTATATTTATTCTAGATAAAAGCATTCTATATTTAGCATATGTCTAGCAAAAAAAA
+
AAAAA#EE6EEEEEEEEEEEEAAEEAEEEEEEEEEEEE/EAE/EAE/EA/EAEAAAE//EEAEAA6
@SRR6750041.3 3/1
ATCCANAATGATGTGTTGCTCTGGAGGTACAGAGATAACGTCAGCTGGAATAGTTTCCCCTCACAG
+
AAAAA#EE6E6EEEEEE6EEEEAEEEEEEEEEEE//EAEEEEEAAEAEEEAE/EAEEA6/EEA<E/
@SRR6750041.4 4/1
ACACCNAATGCTCTGGCCTCTCAAGCACGTGGATTATGCCAGAGAGGCCAGAGCATTCTTCGTACA
+
/AAAA#EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEAE/E/<//AEA/EA//E//

下面是我开始使用的脚本的最小可复制示例。

heavy_lifting.py

#!/usr/bin/env python
import argparse

# Read in arguments
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--inputFastq', required=True, help='forward .fastq')
parser.add_argument('-o', '--outputFastq', required=True, help='output .fastq')
args = parser.parse_args()

# Iterate through input file and append to output file
with open(args.inputFastq, "r") as infile:
    with open(args.outputFastq, "a") as outfile:
    for line in infile:
        outfile.write("modified" + line)

wrapper.sh

#!/bin/bash

NUMCORES="4"
FASTQ_F="./fastq_F.fastq"

# split the input fastq for parallel processing. One split fastq file will be created for     each core available.
split --number="l/$NUMCORES" $FASTQ_F split_fastq_F_

# Feed split fastq files to GNU Parallel to invoke parallel executions of `heavy_lifting.py`
ls split_fastq_F* | awk -F "split_fastq_F" '{print $2}' | parallel "python  heavy_lifting.py -i split_fastq_F{} -o output.fastq"

#remove intermediate split fastq files
rm split_fastq_*

要执行这些脚本,我使用命令bash wrapper.sh 您可以看到创建了一个结果文件output.fastq并包含修改后的 fastq 文件。

下面是我尝试使用 python 包装器wrapper.py调用并行处理。

wrapper.py

#!/usr/bin/env python

import heavy_lifting
from joblib import Parallel, delayed
import multiprocessing

numcores = 4
fastq_F = "fastq_F.fastq"

#Create some logic to split the input fastq file into chunks for parallel processing.  

# Get input fastq file dimensions
with open(fastq_F, "r") as infile:
    length_fastq = len(infile.readlines())
    print(length_fastq)
    lines = infile.readlines()
    split_size = length_fastq / numcores
    print(split_size)

# Iterate through input fastq file writing lines to outfile in bins.
counter = 0
split_counter = 0
split_fastq_list = []
with open(fastq_F, "r") as infile:
    for line in infile:
        if counter == 0:
            filename = str("./split_fastq_F_" + str(split_counter))
            split_fastq_list.append(filename)
            outfile = open(filename, "a")
            counter += 1
        elif counter <= split_size:
            outfile.write(line.strip())
            counter += 1
        else:
            counter = 0
            split_counter += 1
            outfile.close()


Parallel(n_jobs=numcores)(delayed(heavy_lifting)(i, "output.fastq") for i in split_fastq_list)

编辑以提高 wrapper.py 的可重复性

我似乎对如何正确地将输入 arguments 输入到 python wrapper.py 脚本中的“并行”调用中感到最困惑。 任何帮助深表感谢!

Parallel需要函数名,而不是文件/模块名

所以在heavy_lifting你必须把代码放在 function (用 arguments 而不是args

def my_function(inputFastq, outputFastq):

    with open(inputFastq, "r") as infile:
        with open(outputFastq, "a") as outfile:
            for line in infile:
                outfile.write("modified" + line)

然后你可以使用

Parallel(n_jobs=numcores)(delayed(heavy_lifting.my_function)(i, "output.fastq") for i in split_fastq_list)

这应该是评论,因为它没有回答问题,但它太大了。

所有wrapper.sh都可以写成:

parallel -a ./fastq_F.fastq --recstart @SRR --block -1 --pipepart --cat "python  heavy_lifting.py -i {} -o output.fastq"

如果heavy_lifting.py只读取文件而不查找,这也应该可以工作,并且需要更少的磁盘I/O(临时文件被替换为fifo):

parallel -a ./fastq_F.fastq --recstart @SRR --block -1 --pipepart --fifo "python  heavy_lifting.py -i {} -o output.fastq"

它将自动检测 CPU 线程的数量,在以 @SRR 开头的行处拆分 fastq 文件,动态地将每个 CPU 线程拆分为一个块,并将其提供给 python。

如果在没有给出-i的情况下从标准输入读取heavy_lifting.py ,那么这也应该有效:

parallel -a ./fastq_F.fastq --recstart @SRR --block -1 --pipepart "python heavy_lifting.py -o output.fastq"

如果heavy_lifting.py没有 append 到output.fastq的唯一字符串,它将被覆盖。 所以最好让 GNU Parallel 给它一个唯一的名字,比如output2.fastq

parallel -a ./fastq_F.fastq --recstart @SRR --block -1 --pipepart "python heavy_lifting.py -o output{#}.fastq"

有关更通用的 FASTQ 并行包装器,请参阅: https://stackoverflow.com/a/41707920/363028

为了重现性,我将 furas 提供的答案实现到了heavy_lifting.pywrapper.py脚本中。 需要进行额外的编辑才能使代码运行,这就是我提供以下内容的原因。

heavy_lifting.py

#!/usr/bin/env python
import argparse

# Read in arguments
#parser = argparse.ArgumentParser()
#parser.add_argument('-i', '--inputFastq', required=True, help='forward .fastq')
#parser.add_argument('-o', '--outputFastq', required=True, help='output .fastq')
#args = parser.parse_args()

def heavy_lifting_fun(inputFastq, outputFastq):
    # Iterate through input file and append to output file
    outfile = open(outputFastq, "a")
    with open(inputFastq, "r") as infile:
        for line in infile:
            outfile.write("modified" + line.strip() + "\n")
    outfile.close()

if __name__ == '__main__':
heavy_lifting_fun()

wrapper.py

#!/usr/bin/env python

import heavy_lifting
from joblib import Parallel, delayed
import multiprocessing

numcores = 4
fastq_F = "fastq_F.fastq"

#Create some logic to split the input fastq file into chunks for parallel processing.  

# Get input fastq file dimensions
with open(fastq_F, "r") as infile:
    length_fastq = len(infile.readlines())
    print(length_fastq)
    lines = infile.readlines()
    split_size = length_fastq / numcores
    while (split_size  % 4 != 0):
        split_size += 1
    print(split_size)

# Iterate through input fastq file writing lines to outfile in bins.
counter = 0
split_counter = 0
split_fastq_list = []
with open(fastq_F, "r") as infile:
    for line in infile:
        print(counter)
        #if counter == 0 and line[0] != "@":
        #    continue
        if counter == 0:
            filename = str("./split_fastq_F_" + str(split_counter))
            split_fastq_list.append(filename)
            outfile = open(filename, "a")
            outfile.write(str(line.strip() + "\n"))
            counter += 1
        elif counter < split_size:
            outfile.write(str(line.strip() + "\n"))
            counter += 1
        else:
            counter = 0
            split_counter += 1
            outfile.close()
            filename = str("./split_fastq_F_" + str(split_counter))
            split_fastq_list.append(filename)
            outfile = open(filename, "a")
            outfile.write(str(line.strip() + "\n"))
            counter += 1
    outfile.close()

Parallel(n_jobs=numcores)(delayed(heavy_lifting.heavy_lifting_fun)(i, "output.fastq") for i in split_fastq_list)

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM