[英]Iterating through a range of dates in Python
我有以下代码可以做到这一点,但我怎样才能做得更好? 现在我认为它比嵌套循环更好,但是当你在列表理解中有一个生成器时,它开始变得 Perl-one-linerish。
day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
print strftime("%Y-%m-%d", single_date.timetuple())
start_date
和end_date
变量是datetime.date
对象,因为我不需要时间戳。 (它们将用于生成报告)。 对于2009-05-30
的开始日期和2009-06-09
的结束日期:
2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09
为什么有两个嵌套迭代? 对我来说,它只用一次迭代生成相同的数据列表:
for single_date in (start_date + timedelta(n) for n in range(day_count)):
print ...
并且没有列表被存储,只有一个生成器被迭代。 此外,生成器中的“if”似乎是不必要的。
毕竟,一个线性序列应该只需要一个迭代器,而不是两个。
也许最优雅的解决方案是使用生成器函数来完全隐藏/抽象日期范围内的迭代:
from datetime import date, timedelta
def daterange(start_date, end_date):
for n in range(int((end_date - start_date).days)):
yield start_date + timedelta(n)
start_date = date(2013, 1, 1)
end_date = date(2015, 6, 2)
for single_date in daterange(start_date, end_date):
print(single_date.strftime("%Y-%m-%d"))
注意:为了与内置range()
函数保持一致,此迭代在到达end_date
之前停止。 因此,对于包容性迭代,请在第二天使用,就像使用range()
。
这可能更清楚:
from datetime import date, timedelta
start_date = date(2019, 1, 1)
end_date = date(2020, 1, 1)
delta = timedelta(days=1)
while start_date <= end_date:
print(start_date.strftime("%Y-%m-%d"))
start_date += delta
使用dateutil
库:
from datetime import date
from dateutil.rrule import rrule, DAILY
a = date(2009, 5, 30)
b = date(2009, 6, 9)
for dt in rrule(DAILY, dtstart=a, until=b):
print dt.strftime("%Y-%m-%d")
这个 python 库有许多更高级的特性,其中一些非常有用,比如relative delta
并且作为单个文件(模块)实现,可以很容易地包含到项目中。
Pandas 非常适合一般的时间序列,并且直接支持日期范围。
import pandas as pd
daterange = pd.date_range(start_date, end_date)
然后,您可以遍历日期范围以打印日期:
for single_date in daterange:
print (single_date.strftime("%Y-%m-%d"))
它还有很多选择,让生活更轻松。 例如,如果您只想要工作日,则只需交换 bdate_range。 请参阅http://pandas.pydata.org/pandas-docs/stable/timeseries.html#generating-ranges-of-timestamps
Pandas 的强大之处在于它的数据帧,它支持向量化操作(很像 numpy),这使得跨大量数据的操作变得非常快速和容易。
编辑:您也可以完全跳过 for 循环并直接打印它,这样更简单、更高效:
print(daterange)
import datetime
def daterange(start, stop, step=datetime.timedelta(days=1), inclusive=False):
# inclusive=False to behave like range by default
if step.days > 0:
while start < stop:
yield start
start = start + step
# not +=! don't modify object passed in if it's mutable
# since this function is not restricted to
# only types from datetime module
elif step.days < 0:
while start > stop:
yield start
start = start + step
if inclusive and start == stop:
yield start
# ...
for date in daterange(start_date, end_date, inclusive=True):
print strftime("%Y-%m-%d", date.timetuple())
通过支持负步等,此函数所做的比您严格要求的要多。只要您考虑范围逻辑,那么您就不需要单独的day_count
,最重要的是,当您调用该函数时,代码变得更容易阅读多个地方。
这是我能想到的最易读的解决方案。
import datetime
def daterange(start, end, step=datetime.timedelta(1)):
curr = start
while curr < end:
yield curr
curr += step
为什么不试试:
import datetime as dt
start_date = dt.datetime(2012, 12,1)
end_date = dt.datetime(2012, 12,5)
total_days = (end_date - start_date).days + 1 #inclusive 5 days
for day_number in range(total_days):
current_date = (start_date + dt.timedelta(days = day_number)).date()
print current_date
Numpy 的arange
函数可以应用于日期:
import numpy as np
from datetime import datetime, timedelta
d0 = datetime(2009, 1,1)
d1 = datetime(2010, 1,1)
dt = timedelta(days = 1)
dates = np.arange(d0, d1, dt).astype(datetime)
astype
的用途是将numpy.datetime64
转换为datetime.datetime
对象的数组。
显示从今天开始的最后 n 天:
import datetime
for i in range(0, 100):
print((datetime.date.today() + datetime.timedelta(i)).isoformat())
输出:
2016-06-29
2016-06-30
2016-07-01
2016-07-02
2016-07-03
2016-07-04
为了完整period_range
,Pandas 还有一个period_range
函数来处理越界的时间戳:
import pandas as pd
pd.period_range(start='1/1/1626', end='1/08/1627', freq='D')
import datetime
def daterange(start, stop, step_days=1):
current = start
step = datetime.timedelta(step_days)
if step_days > 0:
while current < stop:
yield current
current += step
elif step_days < 0:
while current > stop:
yield current
current += step
else:
raise ValueError("daterange() step_days argument must not be zero")
if __name__ == "__main__":
from pprint import pprint as pp
lo = datetime.date(2008, 12, 27)
hi = datetime.date(2009, 1, 5)
pp(list(daterange(lo, hi)))
pp(list(daterange(hi, lo, -1)))
pp(list(daterange(lo, hi, 7)))
pp(list(daterange(hi, lo, -7)))
assert not list(daterange(lo, hi, -1))
assert not list(daterange(hi, lo))
assert not list(daterange(lo, hi, -7))
assert not list(daterange(hi, lo, 7))
for i in range(16):
print datetime.date.today() + datetime.timedelta(days=i)
我有一个类似的问题,但我需要每月而不是每天迭代。
这是我的解决方案
import calendar
from datetime import datetime, timedelta
def days_in_month(dt):
return calendar.monthrange(dt.year, dt.month)[1]
def monthly_range(dt_start, dt_end):
forward = dt_end >= dt_start
finish = False
dt = dt_start
while not finish:
yield dt.date()
if forward:
days = days_in_month(dt)
dt = dt + timedelta(days=days)
finish = dt > dt_end
else:
_tmp_dt = dt.replace(day=1) - timedelta(days=1)
dt = (_tmp_dt.replace(day=dt.day))
finish = dt < dt_end
示例#1
date_start = datetime(2016, 6, 1)
date_end = datetime(2017, 1, 1)
for p in monthly_range(date_start, date_end):
print(p)
输出
2016-06-01
2016-07-01
2016-08-01
2016-09-01
2016-10-01
2016-11-01
2016-12-01
2017-01-01
示例#2
date_start = datetime(2017, 1, 1)
date_end = datetime(2016, 6, 1)
for p in monthly_range(date_start, date_end):
print(p)
输出
2017-01-01
2016-12-01
2016-11-01
2016-10-01
2016-09-01
2016-08-01
2016-07-01
2016-06-01
您可以简单而可靠地使用 pandas 库在两个日期之间生成一系列日期
import pandas as pd
print pd.date_range(start='1/1/2010', end='1/08/2018', freq='M')
您可以通过将 freq 设置为 D、M、Q、Y(每天、每月、每季度、每年)来更改生成日期的频率
> pip install DateTimeRange
from datetimerange import DateTimeRange
def dateRange(start, end, step):
rangeList = []
time_range = DateTimeRange(start, end)
for value in time_range.range(datetime.timedelta(days=step)):
rangeList.append(value.strftime('%m/%d/%Y'))
return rangeList
dateRange("2018-09-07", "2018-12-25", 7)
Out[92]:
['09/07/2018',
'09/14/2018',
'09/21/2018',
'09/28/2018',
'10/05/2018',
'10/12/2018',
'10/19/2018',
'10/26/2018',
'11/02/2018',
'11/09/2018',
'11/16/2018',
'11/23/2018',
'11/30/2018',
'12/07/2018',
'12/14/2018',
'12/21/2018']
使用 pendulum.period:
import pendulum
start = pendulum.from_format('2020-05-01', 'YYYY-MM-DD', formatter='alternative')
end = pendulum.from_format('2020-05-02', 'YYYY-MM-DD', formatter='alternative')
period = pendulum.period(start, end)
for dt in period:
print(dt.to_date_string())
对于那些对 Pythonic 函数方式感兴趣的人:
from datetime import date, timedelta
from itertools import count, takewhile
for d in takewhile(lambda x: x<=date(2009,6,9), map(lambda x:date(2009,5,30)+timedelta(days=x), count())):
print(d)
这个函数有一些额外的特性:
错误检查,以防结尾早于开头
import datetime from datetime import timedelta DATE_FORMAT = '%Y/%m/%d' def daterange(start, end): def convert(date): try: date = datetime.datetime.strptime(date, DATE_FORMAT) return date.date() except TypeError: return date def get_date(n): return datetime.datetime.strftime(convert(start) + timedelta(days=n), DATE_FORMAT) days = (convert(end) - convert(start)).days if days <= 0: raise ValueError('The start date must be before the end date.') for n in range(0, days): yield get_date(n) start = '2014/12/1' end = '2014/12/31' print list(daterange(start, end)) start_ = datetime.date.today() end = '2015/12/1' print list(daterange(start, end))
这是通用日期范围函数的代码,类似于 Ber 的答案,但更灵活:
def count_timedelta(delta, step, seconds_in_interval):
"""Helper function for iterate. Finds the number of intervals in the timedelta."""
return int(delta.total_seconds() / (seconds_in_interval * step))
def range_dt(start, end, step=1, interval='day'):
"""Iterate over datetimes or dates, similar to builtin range."""
intervals = functools.partial(count_timedelta, (end - start), step)
if interval == 'week':
for i in range(intervals(3600 * 24 * 7)):
yield start + datetime.timedelta(weeks=i) * step
elif interval == 'day':
for i in range(intervals(3600 * 24)):
yield start + datetime.timedelta(days=i) * step
elif interval == 'hour':
for i in range(intervals(3600)):
yield start + datetime.timedelta(hours=i) * step
elif interval == 'minute':
for i in range(intervals(60)):
yield start + datetime.timedelta(minutes=i) * step
elif interval == 'second':
for i in range(intervals(1)):
yield start + datetime.timedelta(seconds=i) * step
elif interval == 'millisecond':
for i in range(intervals(1 / 1000)):
yield start + datetime.timedelta(milliseconds=i) * step
elif interval == 'microsecond':
for i in range(intervals(1e-6)):
yield start + datetime.timedelta(microseconds=i) * step
else:
raise AttributeError("Interval must be 'week', 'day', 'hour' 'second', \
'microsecond' or 'millisecond'.")
我有以下代码可以做到这一点,但是我该如何做得更好呢? 现在,我认为它比嵌套循环更好,但是当列表理解器中包含生成器时,它开始变得Perl-linerish。
day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
print strftime("%Y-%m-%d", single_date.timetuple())
start_date
和end_date
变量是datetime.date
对象,因为我不需要时间戳。 (它们将用于生成报告)。对于开始日期2009-05-30
和结束日期2009-06-09
:
2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09
from datetime import date,timedelta
delta = timedelta(days=1)
start = date(2020,1,1)
end=date(2020,9,1)
loop_date = start
while loop_date<=end:
print(loop_date)
loop_date+=delta
您可以使用Arrow
:
这是文档中的示例,迭代数小时:
from arrow import Arrow
>>> start = datetime(2013, 5, 5, 12, 30)
>>> end = datetime(2013, 5, 5, 17, 15)
>>> for r in Arrow.range('hour', start, end):
... print repr(r)
...
<Arrow [2013-05-05T12:30:00+00:00]>
<Arrow [2013-05-05T13:30:00+00:00]>
<Arrow [2013-05-05T14:30:00+00:00]>
<Arrow [2013-05-05T15:30:00+00:00]>
<Arrow [2013-05-05T16:30:00+00:00]>
要迭代数天,您可以像这样使用:
>>> start = Arrow(2013, 5, 5)
>>> end = Arrow(2013, 5, 5)
>>> for r in Arrow.range('day', start, end):
... print repr(r)
(没有检查你是否可以传递datetime.date
对象,但无论如何, Arrow
对象通常更容易)
对于按天递增的范围执行以下操作如何:
for d in map( lambda x: startDate+datetime.timedelta(days=x), xrange( (stopDate-startDate).days ) ):
# Do stuff here
对于通用版本:
for d in map( lambda x: startTime+x*stepTime, xrange( (stopTime-startTime).total_seconds() / stepTime.total_seconds() ) ):
# Do stuff here
请注意, .total_seconds() 仅在 python 2.7 之后才受支持如果您坚持使用早期版本,您可以编写自己的函数:
def total_seconds( td ):
return float(td.microseconds + (td.seconds + td.days * 24 * 3600) * 10**6) / 10**6
通过将range
参数存储在元组中来实现可逆步骤的方法略有不同。
def date_range(start, stop, step=1, inclusive=False):
day_count = (stop - start).days
if inclusive:
day_count += 1
if step > 0:
range_args = (0, day_count, step)
elif step < 0:
range_args = (day_count - 1, -1, step)
else:
raise ValueError("date_range(): step arg must be non-zero")
for i in range(*range_args):
yield start + timedelta(days=i)
import datetime
from dateutil.rrule import DAILY,rrule
date=datetime.datetime(2019,1,10)
date1=datetime.datetime(2019,2,2)
for i in rrule(DAILY , dtstart=date,until=date1):
print(i.strftime('%Y%b%d'),sep='\n')
输出:
2019Jan10
2019Jan11
2019Jan12
2019Jan13
2019Jan14
2019Jan15
2019Jan16
2019Jan17
2019Jan18
2019Jan19
2019Jan20
2019Jan21
2019Jan22
2019Jan23
2019Jan24
2019Jan25
2019Jan26
2019Jan27
2019Jan28
2019Jan29
2019Jan30
2019Jan31
2019Feb01
2019Feb02
如果您要使用动态timedelta
,那么您可以使用:
1.带while循环
def datetime_range(start: datetime, end: datetime, delta: timedelta) -> Generator[datetime, None, None]:
while start <= end:
yield start
start += delta
2.带for循环
from datetime import datetime, timedelta
from typing import Generator
def datetime_range(start: datetime, end: datetime, delta: timedelta) -> Generator[datetime, None, None]:
delta_units = int((end - start) / delta)
for _ in range(delta_units + 1):
yield start
start += delta
3. 如果你使用的是 async/await
async def datetime_range(start: datetime, end: datetime, delta: timedelta) -> AsyncGenerator[datetime, None]:
delta_units = int((end - start) / delta)
for _ in range(delta_units + 1):
yield start
start += delta
4.列表理解
def datetime_range(start: datetime, end: datetime, delta: timedelta) -> List[datetime]:
delta_units = int((end - start) / delta)
return [start + (delta * index) for index in range(delta_units + 1)]
然后可以像这样简单地使用1和2解决方案
start = datetime(2020, 10, 10, 10, 00)
end = datetime(2022, 10, 10, 18, 00)
delta = timedelta(minutes=30)
result = [time_part for time_part in datetime_range(start, end, delta)]
# or
for time_part in datetime_range(start, end, delta):
print(time_part)
可以在异步上下文中像这样使用三分之三的解决方案。 因为它重新运行异步生成器 object,它只能在异步上下文中使用
start = datetime(2020, 10, 10, 10, 00)
end = datetime(2022, 10, 10, 18, 00)
delta = timedelta(minutes=30)
result = [time_part async for time_part in datetime_range(start, end, delta)]
async for time_part in datetime_range(start, end, delta):
print(time_part)
解决方案的好处是它们都使用动态timedelta
。 这在您不知道您将拥有哪个时间增量的情况下非常有用。
标准pandas.date_range function 正是为此目的,可用作单线......
只需使用:
pd.date_range(start=start_date.floor('d'),end=end_date.floor('d'), freq = 'd')
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.