[英]Earlystopping in multiclassification model Keras
我面临一个多分类问题,为此我构建了以下 model:
def model_building():
input = keras.Input(shape=(X_train[0]).shape)
hidden1 = keras.layers.Dense(20)(input)
dropout1 = keras.layers.Dropout(0.25)(hidden1)
hidden2 = keras.layers.Dense(20)(dropout1)
output = keras.layers.Dense(1)(hidden3)
model = keras.Model(inputs=input, outputs=output, name='ClassModel')
model.compile(loss='sparse_categorical_crossentropy', optimizer=keras.optimizers.Nadam(learning_rate=0.01), metrics=[acc])
return model
但是在拟合时,它向我显示了这个错误
from keras import callbacks
earlystopping = callbacks.EarlyStopping(monitor ="loss",
mode ="min", patience = 5,
restore_best_weights = True)
history = model.fit(X_train, Y_train, epochs=40, validation_split=0.2, verbose=0,
shuffle=True, callbacks =[earlystopping])
# ERROR:
InvalidArgumentError: Received a label value of 4 which is outside the valid range of [0, 1). Label values: 2 3 1 3 2 3 2 2 3 2 2 2 3 3 3 3 4 2 2 2 2 3 3 2 2 3 2 2 3 2 2 4
是否可以在多分类问题中构建EarlyStopping
? 如果可能,怎么做?
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.