[英]Julia CUDA - Reduce matrix columns
考虑以下 kernel,它沿二维矩阵的行减少
function row_sum!(x, ncol, out)
"""out = sum(x, dims=2)"""
row_idx = (blockIdx().x-1) * blockDim().x + threadIdx().x
for i = 1:ncol
@inbounds out[row_idx] += x[row_idx, i]
end
return
end
N = 1024
x = CUDA.rand(Float64, N, 2*N)
out = CUDA.zeros(Float64, N)
@cuda threads=256 blocks=4 row_sum!(x, size(x)[2], out)
isapprox(out, sum(x, dims=2)) # true
除了沿(二维矩阵的)列减少之外,我如何编写类似的 kernel ? 特别是,我如何获取每一列的索引,类似于我们如何使用row_idx
每一行的索引?
这是代码:
function col_sum!(x, nrow, out)
"""out = sum(x, dims=1)"""
col_idx = (blockIdx().x-1) * blockDim().x + threadIdx().x
for i = 1:nrow
@inbounds out[col_idx] += x[i, col_idx]
end
return
end
N = 1024
x = CUDA.rand(Float64, N, 2N)
out = CUDA.zeros(Float64, 2N)
@cuda threads=256 blocks=8 col_sum!(x, size(x, 1), out)
这是测试:
julia> isapprox(out, vec(sum(x, dims=1)))
true
如您所见,结果向量的大小现在是2N
而不是N
,因此我们必须相应地调整blocks
的数量(即乘以2
现在我们有8
而不是4
)
更多材料可以在这里找到: https://juliagpu.gitlab.io/CUDA.jl/tutorials/introduction/
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.