[英]Python pandas - look up value in different df using 2 columns' values, then calculate difference
我想在我的 df 中添加一列,以显示 CurrentScore 与对应于相同日期、部门和分类的基本分数之间的差异。 基本分数位于名为 base_score_df 的单独数据框中,以日期为索引。 如果 base_score_df 缺少当天的基本分数,我希望结果为空。
主要的df:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Date': '2022-2-1 2022-2-1 2022-2-2 2022-2-2 2022-2-2 2022-2-3 2022-2-3 2022-2-3'.split(),
'Name': 'Walmart Google Walmart Microsoft Target Walmart Google Microsoft'.split(),
'Sector': 'Retail Tech Retail Tech Retail Retail Tech Tech'.split(),
'Classification': '3 4 3 5 5 4 4 4'.split(),
'CurrentScore': '200 197 202 188 186 193 202 201'.split()
})
print(df)
Date Name Sector Classification CurrentScore
0 2022-2-1 Walmart Retail 3 200
1 2022-2-1 Google Tech 4 197
2 2022-2-2 Walmart Retail 3 202
3 2022-2-2 Microsoft Tech 5 188
4 2022-2-2 Target Retail 5 186
5 2022-2-3 Walmart Retail 4 193
6 2022-2-3 Google Tech 4 202
7 2022-2-3 Microsoft Tech 4 201
这是你可以做的,评论中的解释:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Date': '2022-2-1 2022-2-1 2022-2-2 2022-2-2 2022-2-2 2022-2-3 2022-2-3 2022-2-3'.split(),
'Name': 'Walmart Google Walmart Microsoft Target Walmart Google Microsoft'.split(),
'Sector': 'Retail Tech Retail Tech Retail Retail Tech Tech'.split(),
'Classification': '3 4 3 5 5 4 4 4'.split(),
'CurrentScore': '200 197 202 188 186 193 202 201'.split()
})
base_score_df=pd.DataFrame({'Date': '2022-2-1 2022-2-3'.split(),
'Retail 3': '100 97'.split(),
'Retail 4': '102 100'.split(),
'Retail 5': '103 101'. split(),
'Tech 3': '105 107'.split(),
'Tech 4': '110 109'.split(),
'Tech 5': '112 113'.split()
})
# ensure date column is in the same format
df['Date'] = pd.to_datetime(df.Date)
base_score_df['Date'] = pd.to_datetime(base_score_df.Date)
# melt the base score df into a long format
base_score_df = pd.melt(base_score_df,
id_vars=['Date'],
value_vars=[_ for _ in base_score_df.columns if _ != 'Date'])
base_score_df.columns = ['Date', 'category', 'BaseScore']
# split the category into Sector and Classification
base_score_df['Sector'], base_score_df['Classification'] = zip(*base_score_df.category.str.split(' '))
base_score_df.drop('category', axis=1, inplace=True)
# merge back with original dataframe
df = pd.merge(df,
base_score_df,
on=['Date', 'Sector', 'Classification'],
how='left')
# calculate score difference
df['ScoreDiff'] = df['CurrentScore'].astype(float) - df['BaseScore'].astype(float)
# output
df
Date Name Sector Classification CurrentScore BaseScore ScoreDiff
0 2022-02-01 Walmart Retail 3 200 100 100.0
1 2022-02-01 Google Tech 4 197 110 87.0
2 2022-02-02 Walmart Retail 3 202 NaN NaN
3 2022-02-02 Microsoft Tech 5 188 NaN NaN
4 2022-02-02 Target Retail 5 186 NaN NaN
5 2022-02-03 Walmart Retail 4 193 100 93.0
6 2022-02-03 Google Tech 4 202 109 93.0
7 2022-02-03 Microsoft Tech 4 201 109 92.0
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.