[英]populate SQL database with dask dataframe and dump into a file
在此 colab上重现错误和用例
我有多个大表,我通过 Dask (dataframe) 读取和分析它们。 分析后,我想将它们推送到本地数据库(在本例中为 sqlite 引擎通过 sqlalchemy package。
这是一个虚拟数据:
import pandas as pd
import dask.dataframe as dd
df = pd.DataFrame([{"i": i, "s": str(i) * 2} for i in range(4)])
ddf = dd.from_pandas(df, npartitions=2)
from dask.utils import tmpfile
from sqlalchemy import create_engine
with tmpfile(
dir="/outputs/",
extension="db",
) as f:
print(f)
db = f"sqlite:///{f}"
ddf.to_sql("test_table", db)
engine = create_engine(
db,
echo=False,
)
print(dir(engine))
result = engine.execute("SELECT * FROM test_table").fetchall()
print(result)
但是, tmpfile
文件是临时文件,并未存储在我的本地驱动器上。 我想将数据库转储到我的本地驱动器中; 我找不到tmpfile
的任何参数以确保将其存储为文件。 两人都不知道如何倾倒我的引擎。
更新如果我使用普通文件,会遇到如下错误
return self.dbapi.connect(*cargs, **cparams)
sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) unable to open database file
(Background on this error at: https://sqlalche.me/e/14/e3q8)
这是代码
with open(
"/outputs/hello.db", "wb"
) as f:
print(f)
db = f"sqlite:///{f}"
ddf.to_sql("test_table", db, if_exists="replace")
engine = create_engine(
db,
echo=False,
)
print(dir(engine))
result = engine.execute("SELECT * FROM test_table").fetchall()
print(result)
如果您想保存到常规文件,则无需使用上下文管理器:
import dask.dataframe as dd
import pandas as pd
df = pd.DataFrame([{"i": i, "s": str(i) * 2} for i in range(4)])
ddf = dd.from_pandas(df, npartitions=2)
OUT_FILE = "test.db"
db = f"sqlite:///{OUT_FILE}"
ddf.to_sql("test_table", db)
要测试文件是否已保存,请运行:
from sqlalchemy import create_engine
engine = create_engine(
db,
echo=False,
)
result = engine.execute("SELECT * FROM test_table").fetchall()
print(result)
# [(0, 0, '00'), (1, 1, '11'), (2, 2, '22'), (3, 3, '33')]
声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.