繁体   English   中英

在SAS或R中读取原始数据

[英]Reading Raw Data in SAS Or R

对于我们的分析,我们需要在分析之前从csv(xls)读取原始数据并将其转换为SAS数据集。

现在,问题在于该原始数据通常存在两个问题:1.列的顺序有时会更改。 因此,如果在较早的时期我们按变量A的顺序排列列,则依次为B,然后C,等等。它可能会更改为B,然后是C,然后是A。2。有一些外来元素,例如“#”或“”。 ”或“某些字母”等。现在,我们必须先清除原始数据,然后才能读取SAS。 这花费了大量时间。 在读取数据之前,我们有什么方法可以在SAS系统内部清理数据。 如果我们可以使用SAS代码纠正数据,则将节省大量时间。

这是示例:

时段1:我以这种格式在Data1.csv中获得了数据。 在数字的B列中,我有“#”和“。”。 也是数字的C列,我有“ g”。 如果我使用PROC IMPORT或Infile语句导入Data1.csv,则B和C列中的这些外来元素将保留。 这里的问题是如何做到这一点? 我可以使用If STATEMENT。 但是问题在于,外来元素太多(例如,代替“#”,“。”,“ g”,我可能会得到其他外来元素,例如“ $”,“ h”等。)每次我在SAS中导入原始数据时都无需使用IF STATEMENT指定即可检测和删除外来元素的代码。

   A    B   C
Name1   1   5
Name2   2   6
Name3   3   4
Name4   #   g
Name5   5   3
Name6   .   6

期间2:在此期间,我得到了DATA2.csv,如下所示。 当我使用INFILE语句时,我指定第一个应该使用特定名称读取A,然后使用特定名称读取B,然后读取C。在第二个周期中,当我得到数据B时被赋予第一。 因此,当SAS读取数据时,我使用的是B而不是A。因此,我必须每次使用前一阶段数据检查变量排序并在使用infile语句读取数据之前对其进行更正。 由于变量的数量太大,因此以这种方式验证列顺序非常耗时(有时会令人沮丧)。 是否有SAS代码,即使不是按此顺序,SAS也可以使用该代码自动读取A,B,C。

B   A   C
1   Name1   5
2   Name2   6
3   Name3   4
#   Name4   g
5   Name5   3
.   Name6   6

即使我主要在分析目的中使用SAS。 但是我可以使用R清除数据,然后用于在SAS中读取数据以进行进一步分析。 因此,R代码也可能会有所帮助。

谢谢。

在R中,当您指定列为特定类时,可以提高文件读取的速度。 通过提供的示例(3列,中间一列为“字符”,您可以使用以下代码:

 dat <- read.csv( filename, colClasses=c("numeric", "character", "numeric"), comment.char="")

“#”和“。” 在数字列中遇到时将变为NA值。 上面的代码删除了注释字符的默认规范,即“#”。 如果需要“#”和“。”。 要强制输入到NA_character_的字符列中的条目,可以使用以下代码:

dat <- read.csv( filename, 
                 colClasses=c("numeric", "character", "numeric"),
                 comment.char="",
                 na.strings=c("NA", ".", "#") )

默认情况下,read.csv()假定header=TRUE设置,但是如果使用read.table(),则需要使用显示的两个文件结构来声明header=TRUE 这里有进一步的文档和读取Excel数据的有效示例:但是,我的建议是在计划和使用CSV传输时执行此操作。 您将以这种方式更快地看到Excel处理日期和缺失值的棘手事情。 建议您按照POSIX标准将数据格式更改为自定义“ yyyy-mm-dd”,在这种情况下,您还可以指定“ Date”分类列,并跳过在其中转换字符分类列的过程默认的Excel格式(所有格式都不正确)转换为日期。

是的,您可以使用SAS进行您可能想到的任何类型的“数据清理”。 SAS DATA步骤语言具有执行此类操作的功能,但是没有神奇的子弹。 您需要自己编写代码。

csv文件只是纯文本文件(与xls文件完全不同)。 通常, csv文件中的第一行包含列名,数据以第二行开头。 如果使用PROC IMPORT ,则SAS将使用第一行来构造变量名称,并尝试通过扫描文件的前几行来确定数据类型。 例如:

proc import datafile='c:\temp\somefile.csv'
     out=SASdata
     dbms=csv replace;
run;

或者,您可以通过数据步骤读取文件。 这将要求您事先知道文件布局。 例如:

data SASdata;
   infile 'c:\temp\somefile.csv' dsd firstobs=2 lrecl=32767 truncover;
   informat A $50.; /* A character variable with max length 50 */
   informat B yymmdd10.; /* A date presented like 2012-08-25 */
   informat C dollar12.; /* A number containing dollar sign, commas, or decimals */

   input A B C;  /* The order of the variables in the file */

   if B = . then B = today(); /* A possible data cleaning statement */
run;

注意,INPUT语句控制变量在文件中存在的顺序。 关键是您使用的代码必须与您处理的每个文件的布局匹配。

这些只是一般性评论。 如果遇到问题,请发回一个更具体的问题。

问题更新 :原始数据文件中的变量必须按照与每个文件中存在的顺序相同的顺序在INPUT语句中列出。 另外,您需要直接定义列类型,并建立它们需要遵循的任何规则。 无法自动执行此操作; 每个文件都应分开处理。

在这种情况下,假设您的变量是A,B和C,其中A是字符,B和C是数字。 该程序可能会处理这两个文件,并将它们添加到历史数据集中(假设为ALLDATA):

data temp;
   infile 'c:\temp\data1.csv' dsd firstobs=2 lrecl=32767 truncover;
   /* Define dataset variables */
   informat A $50.;
   informat B 12.;
   informat C 12.;
   /* Add a KEEP statement to keep only the variables you want */
   keep A B C;

   input A B C;
run;
proc append base=ALLDATA data=temp;
run;
data temp;
   infile 'c:\temp\data2.csv' dsd firstobs=2 lrecl=32767 truncover;
   informat A $50.;
   informat B 12.;
   informat C 12.;

   input B A C;
run;
proc append base=ALLDATA data=temp;
run;

注意每个数据步骤的“数据定义”部分是相同的; 唯一的区别是INPUT语句中列出的变量的顺序。 请注意,由于变量A和B被定义为数字,因此当读取那些无效字符(#和g)时,这些值将存储为缺失值。

对于您的情况,我将创建一个SAS模板程序,以按期望的顺序定义所有所需的变量。 然后使用该模板按照该文件中变量的顺序导入每个文件。 设置模板程序可能需要一段时间,但是要运行它,您只需要修改INPUT语句即可。

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM