简体   繁体   English

coq Set或Type如何成为命题

[英]How can a coq Set or Type be a proposition

I'm reading a tutorial on Coq. 我正在阅读关于Coq的教程。 It constructs a bool type as follows: 它构造一个bool类型如下:

Coq < Inductive bool :  Set := true | false.
bool is defined
bool_rect is defined
bool_ind is defined
bool_rec is defined

Then it shows what each of these things are using "Check". 然后它显示了这些东西正在使用“检查”。

Coq < Check bool_ind.
bool_ind
     : forall P : bool -> Prop, P true -> P false -> forall b : bool, P b

Coq < Check bool_rec.
bool_rec
     : forall P : bool -> Set, P true -> P false -> forall b : bool, P b

Coq < Check bool_rect.
bool_rect
     : forall P : bool -> Type, P true -> P false -> forall b : bool, P b

I understand bool_ind . 我理解bool_ind It says that if something holds for true and it holds for false , then it holds for all b in bool (because those are the only two). 它说,如果某些东西保持为true并且它保持为false ,那么它适用于bool所有b (因为那些是唯一的两个)。

But I don't understand what the expressions for bool_rec or bool_rect mean. 但我不明白bool_recbool_rect的表达是什么意思。 It seems as if P true (which is a Set for bool_rec and a Type for bool_rect ) is being treated as a propositional value. 看来,如果P true (这是一Set用于bool_recTypebool_rect )被视为一个命题值。 What am I missing here? 我在这里错过了什么?

Your intuition for bool_ind is spot on, but thinking about why bool_ind means what you said might help clarify the other two. 你对bool_ind直觉bool_ind明显,但是考虑为什么bool_ind意味着你所说的可能有助于澄清其他两个。 We know that 我们知道

bool_ind : forall P : bool -> Prop,
             P true ->
             P false ->
             forall b : bool,
               P b

If we read this as a logical formula, we get the same reading you did: 如果我们将其视为逻辑公式,我们会得到您所做的相同读数:

  • For every predicate P on bool eans, 对于bool eans中的每个谓词P
    • If P true holds, and 如果P true ,则
    • If P false holds, then 如果P false成立,那么
    • For every boolean b , 对于每个布尔值b
      • P b holds. P b成立。

But this isn't just a logical formula, it's a type. 但这不仅仅是一个逻辑公式,而是一种类型。 Specifically, it's a (dependent) function type. 具体来说,它是(依赖)函数类型。 And as a function type, it says (if you'll allow me the liberty of inventing names for the unnamed arguments and the result): 作为一个函数类型,它说(如果你允许我为未命名的参数和结果发明名称的自由):

  • Given a value P : bool -> Prop , 给定值P : bool -> Prop
    • A value Pt : P true , Pt : P true
    • A value Pf : P false , and Pf : P false ,和
    • A value b : bool , b : bool
      • We can construct a value Pb : P b . 我们可以构造一个值Pb : P b

(Of course, this is a curried function, so there are other ways to break down the type into prose, but this is clearest for our purposes.) (当然,这是一个curry函数,所以还有其他方法可以将类型分解为散文,但这对我们的目的来说是最清楚的。)

The big important thing here, the thing that makes Coq work as a theorem prover while being a programming language (or vice versa) is the Curry-Howard correspondence : types are propositions, and values are proofs of those propositions. 这里最重要的是,使Coq作为一个定理证明者而作为一种编程语言(反之亦然)的事情是Curry-Howard的对应关系 :类型是命题,值是这些命题的证明。 For instance, the simple function type -> corresponds to implication, and the dependent function type forall corresponds to universal quantification. 例如,简单函数类型->对应于蕴涵,依赖函数类型forall对应于通用量化。 (The notation is pretty suggestive :-)) So in Coq, to prove that φ → ψ, we must construct a value of type φ -> ψ : a function that takes a value of type φ (or in other words, a proof of the proposition φ) and uses it to construct a value of type ψ (a proof of the proposition ψ). (符号很有启发性:-))所以在Coq中,为了证明φ→ψ,我们必须构造一个φ -> ψ类型的值:一个取φ型值的函数(换句话说,一个证明命题φ)并用它来构造ψ类型的值(命题ψ的证明)。

In Coq, we can think about all types in this way, whether those types live in Set , Type , or Prop . 在Coq中,我们可以通过这种方式考虑所有类型,无论这些类型是否存在于SetTypeProp (So when you say "It seems as if P true (which is a Set for bool rec and a Type for bool_rect) is being treated as a propositional value," you're right!) For instance, let's consider how we'd implement bool_ind ourselves. (所以当你说“似乎P true(这是bool rec的设置和bool_rect的类型)被视为命题值时,”你是对的!)例如,让我们考虑一下我们是怎么做的我们自己实现bool_ind We'll start by listing all the parameters to the function, along with its return type: 我们首先列出函数的所有参数及其返回类型:

Definition bool_ind' (P  : bool -> Prop)
                     (Pt : P true)
                     (Pf : P false)
                     (b  : bool)
                     : P b :=

So far, so good. 到现在为止还挺好。 At this point, we'd like to return something of type P b , but we don't know what b is. 在这一点上,我们想要返回P b类型的东西,但我们不知道b是什么。 So, as always in these situations, we pattern match: 所以,在这些情况下,我们总是模式匹配:

  match b with

There are now two cases. 现在有两个案例。 First, b could be true . 首先, b可能是true In this case, we must want to return something of type P true , and luckily we have such a value: Pt . 在这种情况下,我们必须要返回P true类型为P true东西,幸运的是我们有这样的值: Pt

    | true  => Pt

The false case is similar: false案件类似:

    | false => Pf
  end.

Note that when we implement bool_ind' , it doesn't look very "proofy," but rather very "programmy". 请注意,当我们实现bool_ind' ,它看起来并不“非常有用”,而是非常“程序化”。 Of course, thanks to the Curry-Howard correspondence, these are the same. 当然,由于Curry-Howard的通信,这些都是一样的。 But note that the very same implementation will suffice for the other two functions: 但请注意,完全相同的实现将足以满足其他两个功能:

Definition bool_rec' (P  : bool -> Set)
                     (Pt : P true)
                     (Pf : P false)
                     (b  : bool)
                     : P b :=
  match b with
    | true  => Pt
    | false => Pf
  end.

Definition bool_rect' (P  : bool -> Type)
                      (Pt : P true)
                      (Pf : P false)
                      (b  : bool)
                      : P b :=
  match b with
    | true  => Pt
    | false => Pf
  end.

Looking at this computational definition exposes another way to thing about bool_ind , bool_rec , and bool_rect : they encapsulate what you need to know to talk about every value of bool . 看看这个计算定义揭示了另一种关于bool_indbool_recbool_rect :它们封装了你需要知道的东西来讨论bool 每个值 But either way, we're packaging up that information: if I know something for true , and something for false , then I know it for all the bool s. 但不管怎样,我们正在打包那些信息:如果我知道某些事情是true ,而某些事情是false ,那么我知道所有的bool

The definition of the bool_{ind,rec,rect} functions abstracts over the usual way we write functions on booleans: there's one argument corresponding to the true branch, and one to the false branch. bool_{ind,rec,rect}函数的定义通过我们在布尔值上编写函数的常规方式进行抽象:有一个参数对应于true分支,一个参数对应于false分支。 Or, in other words: these functions are just if statements. 或者,换句话说:这些函数只是if语句。 In a non–dependently-typed language, they could have the simpler type forall S : Set, S -> S -> bool -> S : 在非依赖类型的语言中,它们可以具有更简单的类型forall S : Set, S -> S -> bool -> S

Definition bool_simple_rec (S : Set) (St : P) (Sf : P) (b : bool) : S :=
  match b with
    | true  => St
    | false => Sf
  end.

However, because types can depend on values, we must thread the b through the types everywhere. 但是,因为类型可以依赖于值,所以我们必须通过各种类型来处理b If it turns out we don't want that, though, we can use our more general function and tell : 如果事实证明我们不希望这样,我们可以使用我们更通用的功能并告诉:

Definition bool_simple_rec' (S : Set) : S -> S -> bool -> S :=
  bool_rec (fun _ => S).

Nobody ever said our P : bool -> Set had to use the bool ! 没有人说我们的P : bool -> Set必须使用 bool

All of these functions are a lot more interesting for recursive types. 对于递归类型,所有这些函数都更有趣。 For instance, Coq has the following type of natural numbers: 例如,Coq具有以下类型的自然数:

Inductive nat : Set :=  O : nat | S : nat -> nat.

And we have 我们有

nat_ind : forall P : nat -> Prop,
            P O ->
            (forall n' : nat, P n' -> P (S n')) ->
            forall n : nat,
              P n

Along with the corresponding nat_rec and nat_rect . 连同相应的nat_recnat_rect (Exercise for the reader: implement these functions directly.) (为读者练习:直接实现这些功能。)

At first glance, this is just the principle of mathematical induction. 乍一看,这只是数学归纳的原理。 However, it's also how we write recursive functions on nat s; 但是,它也是我们在nat上编写递归函数的方式; they're the same thing. 他们是一回事。 In general, recursive functions over nat look like the following: 通常, nat递归函数如下所示:

fix f n => match n with
             | O    => ...
             | S n' => ... f n' ...
           end

The arm of the match following O (the base case) is just the value of type PO . O (基本情况)之后的匹配臂只是PO类型的值。 The arm of the match following S n' (the recursive case) is what's passed into the function of type forall n' : nat, P n' -> P (S n') : the n' s are the same, and the value of P n' is the result of the recursive call f n' . S n'之后的匹配臂(递归情况)是传递给类型forall n' : nat, P n' -> P (S n')的函数forall n' : nat, P n' -> P (S n')n'是相同的,并且P n'值是递归调用f n'

Another way to think about the equivalence between the _rec and _ind functions, then—and one which I think is clearer on infinite types than on bool —is that it's the same as the equivalence between mathematical ind uction (which happens in Prop ) and (structural) rec ursion (which happens in Set and Type ). 考虑_rec_ind函数之间的等价性的另一种方法,然后 - 我认为在无限类型上比在bool上更清楚 - 它与数学ind (在Prop中发生)和(和)之间的等价性相同结构) rec ursion(发生在SetType )。


Let's get praxic and use these functions. 让我们充满热情并使用这些功能。 We'll define a simple function that converts booleans to natural numbers, and we'll do it both directly and with bool_rec . 我们将定义一个简单的函数,将布尔值转换为自然数,我们将直接和bool_rec一起bool_rec The simplest way to write this function is with a pattern match: 编写此函数的最简单方法是使用模式匹配:

Definition bool_to_nat_match (b : bool) : nat :=
  match b with
    | true  => 1
    | false => 0
  end.

The alternative definition is 另一种定义是

Definition bool_to_nat_rec : bool -> nat :=
  bool_rec (fun _ => nat) 1 0.

And these two functions are the same: 这两个功能是一样的:

Goal bool_to_nat_match = bool_to_nat_rec.
Proof. reflexivity. Qed.

(Note: these functions are syntactically equal . This is a stronger condition than simply doing the same thing.) (注意:这些函数在语法上是相同的 。这比简单地做同样的事情更强大。)

Here, the P : bool -> Set is fun _ => nat ; 在这里, P : bool -> Setfun _ => nat ; it gives us the return type, which isn't dependent on the argument. 它给我们返回类型,它不依赖于参数。 Our Pt : P true is 1 , the thing to compute when we're given true ; 我们的Pt : P true1 ,当我们给出true时计算的东西; similarly, our Pf : P false is 0 . 同样,我们的Pf : P false0

If we want to use the dependency, we have to cook up a useful data type. 如果我们想要使用依赖项,我们必须编写一个有用的数据类型。 How about 怎么样

Inductive has_if (A : Type) : bool -> Type :=
  | has   : A -> has_if A true
  | lacks : has_if A false.

With this definition, has_if A true is isomorphic to A , and has_if A false is isomorphic to unit . 根据这个定义, has_if A trueA同构,而has_if A false是与unit同构的。 We could then have a function which retains its first argument if and only if it's passed true . 然后我们可以有一个函数,当且仅当它被传递为true时才保留它的第一个参数。

Definition keep_if_match' (A : Type) (a : A) (b : bool) : has_if A b :=
  match b with
    | true  => has A a
    | false => lacks A
  end.

The alternative definition is 另一种定义是

Definition keep_if_rect (A : Type) (a : A) : forall b : bool, has_if A b :=
  bool_rect (has_if A) (has A a) (lacks A).

And they're again the same: 他们又是一样的:

Goal keep_if_match = keep_if_rect.
Proof. reflexivity. Qed.

Here, the return type of the function is dependent upon the argument b , so our P : bool -> Type actually does something. 在这里,函数的返回类型取决于参数b ,所以我们的P : bool -> Type实际上做了什么。

Here's a more interesting example, using natural numbers and length-indexed lists. 这是一个更有趣的例子,使用自然数和长度索引列表。 If you haven't seen length-indexed lists, also called vectors, they're exactly what they say on the tin; 如果你还没有看到长度索引列表,也称为矢量,它们就像他们在锡上所说的那样; vec A n is a list of n A s. vec A nn A的列表。

Inductive vec (A : Type) : nat -> Type :=
  | vnil  : vec A O
  | vcons : forall n, A -> vec A n -> vec A (S n).
Arguments vnil  {A}.
Arguments vcons {A n} _ _.

(The Arguments machinery handles implicit arguments.) Now, we want to produce a list of n copies of some particular element, so we can write that with a fixpoint: Arguments机制处理隐式参数。)现在,我们想要生成一个特定元素的n副本的列表,因此我们可以使用fixpoint编写它:

Fixpoint vreplicate_fix {A : Type} (n : nat) (a : A) : vec A n :=
  match n with
    | O    => vnil
    | S n' => vcons a (vreplicate_fix n' a)
  end.

Alternatively, we can use nat_rect : 或者,我们可以使用nat_rect

Definition vreplicate_rect {A : Type} (n : nat) (a : A) : vec A n :=
  nat_rect (vec A) vnil (fun n' v => vcons a v) n.

Note that since nat_rect captures the recursion pattern, vreplicate_rect is not a fixpoint itself. 请注意,由于nat_rect捕获递归模式,因此vreplicate_rect本身不是固定点。 One thing to note is the third argument to nat_rect : 需要注意的一点是nat_rect的第三个参数:

fun n' v => vcons a v

The v there is conceptually the result of the recursive call to vreplicate_rect n' a ; v在概念上是对vreplicate_rect n' a的递归调用的结果; nat_rect abstracts out that recursion pattern, so we don't need to call it directly. nat_rect抽象出递归模式,因此我们不需要直接调用它。 The n' is indeed the same n' as in vreplicate_fix , but now it seems like we don't need to mention it explicitly. n'vreplicate_fixn'确实相同,但现在看来我们不需要明确提及它。 Why is it passed in? 它为什么传入? That becomes clear if we write out our types: 如果我们写出我们的类型,那就很明显了:

fun (n' : nat) (v : vec A n') => vcons a v : vec A (S n')

We need n' so we know what type v has, and consequently what type the result has. 我们需要n'所以我们知道v有什么类型,结果是什么类型的结果。

Let's see these functions in action: 让我们看看这些功能在起作用:

Eval simpl in vreplicate_fix  0 tt.
Eval simpl in vreplicate_rect 0 tt.
  (* both => = vnil : vec unit 0 *)

Eval simpl in vreplicate_fix  3 true.
Eval simpl in vreplicate_rect 3 true.
  (* both => = vcons true (vcons true (vcons true vnil)) : vec bool 3 *)

And indeed, they're the same: 事实上,他们是一样的:

(* Note: these two functions do the same thing, but are not syntactically
   equal; the former is a fixpoint, the latter is a function which returns a
   fixpoint.  This sort of equality is all you generally need in practice. *)
Goal forall (A : Type) (a : A) (n : nat),
       vreplicate_fix n a = vreplicate_rect n a.
Proof. induction n; [|simpl; rewrite IHn]; reflexivity. Qed.

Above, I posed the exercise of reimplementing nat_rect and friends. 上面,我提出重新实现nat_rect和朋友的练习。 Here's the answer: 这是答案:

Fixpoint nat_rect' (P         : nat -> Type)
                   (base_case : P 0)
                   (recurse   : forall n', P n' -> P (S n'))
                   (n         : nat)
                   : P n :=
  match n with
    | O    => base_case
    | S n' => recurse n' (nat_rect' P base_case recurse n')
  end.

This hopefully makes it clear just how nat_rect abstracts the recursion pattern, and why it's sufficiently general. 这有希望清楚地表明 nat_rect 如何抽象递归模式,以及为什么它足够通用。

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM