简体   繁体   English

模板化函数,适用于原始指针上的迭代器以及unique_ptrs上的迭代器

[英]Templated Function that works for iterators over raw pointers as well as iterators over unique_ptrs

Let's say I have a template function that takes a const range (or better, begin- and end-iterators) of some kind of pointer-collections. 假设我有一个模板函数,它接受某种指针集合的const范围(或更好的开始和结束迭代器)。 This function internally constructs a STL-container with pointers to reorganize the elements. 此函数在内部构造一个STL容器,其中包含指针以重新组织元素。

Now I want to reuse this function for unique_ptr-collections as well. 现在我想为unique_ptr-collections重用这个函数。 I somehow need to modify the template parameters or introduce a new wrapper or overload... but how? 我不知何故需要修改模板参数或引入新的包装器或重载......但是如何? Is there any C++11 template magic, STL helper or boost helper? 有没有C ++ 11模板魔术,STL助手或助推助手? Following an example code: 下面是一个示例代码:

#include <string>
#include <iostream>
#include <vector>
#include <algorithm>
#include <memory>

// Element Class
class Foo { };

// Take a range of elements, sort them internally by their addresses and print them in order    
template <typename FooIterator>
void print_sorted_addresses(FooIterator beginFoos, FooIterator endFoos)
{
    // Sort them
    std::vector<const Foo*> elements(beginFoos, endFoos);
    std::sort(elements.begin(), elements.end());
    // Print them
    for(const auto& e : elements)
        std::cout << e << std::endl;
}

int main() {
    std::vector<Foo*> raw_foos;
    std::vector<std::unique_ptr<Foo>> unique_foos;

    // Fill them
    for(int i=0; i<10; i++) {
        std::unique_ptr<Foo> foo(new Foo());
        raw_foos.push_back(foo.get());
        unique_foos.push_back(std::move(foo));
    }

    print_sorted_addresses(raw_foos.cbegin(), raw_foos.cend());
    //print_sorted_Foos(unique_foos.cbegin(), unique_foos.cend()); // ERROR

    return 0;
}

The culprit seems to be the non-uniform behavior of raw pointers and smart pointers ( unique_ptr in particular) for converting them both to raw pointers. 罪魁祸首似乎是原始指针和智能指针(特别是unique_ptr )的非均匀行为,用于将它们转换为原始指针。 This can either be circumvented via a dereferencing-cycle à la std::addressof(*p) , but this only has well-defined behavior if p is not nullptr . 这可以通过dereferencing- std::addressof(*p)来规避,但是如果p不是nullptr那么它只有明确定义的行为。 To reduce any runtime-checks I played with conditional templates and came up with the following: 为了减少我使用条件模板进行的任何运行时检查,并提出以下内容:

template<typename Ptr> using RawPtr = typename std::pointer_traits<Ptr>::element_type*; 

// raw pointers like int**, const char*, ...
template<typename Ptr>
typename std::enable_if<std::is_pointer<Ptr>::value, RawPtr<Ptr>>::type make_raw(Ptr ptr) { return ptr; }

// smart pointers like unique_ptr, shared_ptr, ... 
template<typename Ptr>
typename std::enable_if<!std::is_pointer<Ptr>::value, RawPtr<Ptr>>::type make_raw(Ptr& ptr) { return ptr.get(); }

This could be used in @tclamb's iterator, or in boost::transform_iterator as in @Praetorian's answer. 这可以在@tclamb的迭代器中使用,或者在@ Praetorian的答案中用于boost :: transform_iterator。 But it still feels strange to build upon the specific get()-member of a smart-pointer implementation instead of the operator*-interface what makes a pointer a pointer. 但是构建特定的get() - 智能指针实现的成员而不是操作符* -interface使得指针成为指针仍然感觉很奇怪。

Here's a generic approach that wraps the pointer iterator. 这是一个包装指针迭代器的通用方法。 On dereference, it dereferences the stored iterator (yielding the (smart-)pointer), and dereferences again (yielding a reference to the pointee ), and then returns the pointee's address (via std::addressof() ). 在取消引用时,它取消引用存储的迭代器(产生(smart-)指针),并再次取消引用(产生对指针对象的引用),然后返回指针对象的地址(通过std::addressof() )。 The rest of the implementation is just iterator boilerplate. 其余的实现只是迭代器样板。

template<typename Iterator,
         typename Address = decltype(std::addressof(**std::declval<Iterator>()))
         >
class address_iterator : public std::iterator<std::input_iterator_tag, Address>
{
public:
    address_iterator(Iterator i) : i_{std::move(i)} {};

    Address operator*() const {
        auto&& ptr = *i_;
        return i_ == nullptr ? nullptr : std::addressof(*ptr);
    };

    Address operator->() const {
        return operator*();
    }

    address_iterator& operator++() {
        ++i_;
        return *this;
    };

    address_iterator operator++(int) {
        auto old = *this;
        operator++();
        return old;
    }

    bool operator==(address_iterator const& other) const {
        return i_ == other.i_;
    }

private:
    Iterator i_;
};

template<typename I, typename A>
bool operator!=(address_iterator<I, A> const& lhs, address_iterator<I, A> const& rhs) {
    return !(lhs == rhs);
}

template<typename Iterator>
address_iterator<Iterator> make_address_iterator(Iterator i) {
    return i;
}

Live example on Coliru (with a std::random_shuffle() thrown in for fun). Coliru上的实例 (带有std::random_shuffle()以获得乐趣)。 :) :)

The problem with your code when dealing with unique_ptr is this line: 处理unique_ptr时代码的问题是这一行:

std::vector<const Foo*> elements(beginFoos, endFoos);

The vector constructor is going to try and copy the unique_ptr s, which is not allowed; vector构造函数将尝试复制unique_ptr ,这是不允许的; and you're interested in what the unique_ptr points to anyway. 并且你对unique_ptr指向的内容感兴趣。 So you need an extra level of dereferencing to yield a reference to the managed object. 因此,您需要额外级别的解除引用才能生成对托管对象的引用。 This can be achieved using Boost.IndirectIterator . 这可以使用Boost.IndirectIterator来实现。

Using boost::indirect_iterator will yield Foo const& , which can then be converted to Foo const * by wrapping it in Boost.TransformIterator , and passing std::addressof as the unary predicate to boost::transform_iterator . 使用boost::indirect_iterator将产生Foo const& ,然后可以通过将其包装在Boost.TransformIterator中将其转换为Foo const * ,并将std::addressof作为一元谓词传递给boost::transform_iterator

template <typename FooIterator>
void print_sorted_addresses(FooIterator beginFoos, FooIterator endFoos) {
    std::vector<Foo const *> elements(
      boost::make_transform_iterator(boost::make_indirect_iterator(beginFoos), 
                                     std::addressof<Foo>),
      boost::make_transform_iterator(boost::make_indirect_iterator(endFoos),
                                     std::addressof<Foo>));

    std::sort(elements.begin(), elements.end());
    for(const auto& e : elements)
        std::cout << e << std::endl;
}

Live demo 现场演示

My 2 coins 我的2个硬币

Foo* get(Foo* const& p) {
    return p;
}

Foo* get(std::unique_ptr<Foo> const& up) {
    return up.get();
}


// Take a range of elements, sort them internally by their addresses and print
// them in order    
template <typename ConstIt>
void print_sorted_addresses(const ConstIt& cbegin, const ConstIt& cend) {

    using deref_type = decltype(*cbegin);
    using raw_ptr_type = decltype(get(*cbegin));

    std::vector<raw_ptr_type> v;
    v.reserve(cend - cbegin);

    std::transform(cbegin, cend, 
                   std::back_inserter(v),
                   [] (const deref_type& p) {
                        return get(p);
                   });


    std::sort(v.begin(), v.end());

    for(const auto& p : v)
        std::cout << p << '\n';
}

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM