简体   繁体   English

细分Bezier曲线

[英]Subdivide Bezier Curves

I want to achieve that I can subdivide a Bezier Curve with a given distance. 我想实现我可以细分具有给定距离的贝塞尔曲线。 Now it works if the Bezier is a straight line, but if I change a Controll-Point(B&C) so the Bezier get's curved, the gap between the calculated Points are no more like the given Distance! 现在它可以工作,如果贝塞尔是一条直线,但如果我改变一个控制点(B&C)使贝塞尔得到弯曲,计算点之间的差距就不再像给定的距离!

I've look through the web, but didn't crash in to a similar Problem. 我通过网络浏览,但没有遇到类似的问题。

float t = Distance between subdividedParts / bezier length;

//A,B,C,D = ControllPoints of Bezier

GetPoint(A,B,C,D,t);

//GetPoint equation:
public static Vector3 GetPoint (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
         t = Mathf.Clamp01(t);
         float OneMinusT = 1f - t;
         return
             OneMinusT * OneMinusT * OneMinusT * p0 +
             3f * OneMinusT * OneMinusT * t * p1 +
             3f * OneMinusT * t * t * p2 +
             t * t * t * p3;
     }

直接bezier 弯曲的bezier bezier explenation

I've managed now to get quite accurate way to split the Bezier and get the Positions => but it's performance consumption is increasing as more accurate it get's. 我现在已经设法得到非常准确的方法来分割Bezier并获得Positions =>但是它的性能消耗正在增加,因为它更准确。 So this could be improved in this code: 所以这可以在这段代码中得到改进:

 //if accuracy is 0.001 = good performance | if 0.000001 laggy performance
    public Vector3[] GetPoints (float gap,float accuracy){
     SimpsonVec sv = SV_Setup(0);
     Vector3 last_spawn = Bezier.GetPoint(sv.A,sv.B,sv.C,sv.D,0);

     List<Vector3> allPoints = new List<Vector3>();
     allPoints.Add(last_spawn);

     for(float t = accuracy;t <= 1.0f; t +=accuracy){
         Vector3 trial = Bezier.GetPoint(sv.A,sv.B,sv.C,sv.D,t);
         if(Vector3.Distance(trial,last_spawn) >= gap){
             last_spawn = trial;
             allPoints.Add(trial);
         }
     }
     return allPoints.ToArray();
 }

for more performance I did now this: 为了更好的表现,我现在做了这个:

Code for Vector3[] Array Output Vector3 []数组输出的代码

public Vector3[] GetAllPoints(float gap,float acc){

    SimpsonVector = SV_SETUP_ALL();
    BezierPoints bp = new BezierPoints();
    bp.bp_vector3 = new List<Vector3>();
    bp.bp_lastSpawn = new List<Vector3>();

    for(int i = 0; i<points.Length / 3;i++){

        Vector3 ls = new Vector3();
        if(i == 0){
            ls = Bezier.GetPoint(SimpsonVector[0].A,SimpsonVector[0].B,SimpsonVector[0].C,SimpsonVector[0].D,0);
        }if (i > 0){
            ls = bp.bp_lastSpawn[i-1];
        }
        BezierPoints bp_temp = GetSegmentPoints(gap,acc,i,ls);
        bp.bp_lastSpawn.Add(bp_temp.bp_lastSpawn[0]);
        bp.bp_vector3.AddRange(bp_temp.bp_vector3);
        SimpsonVector_TEMP = SimpsonVector;
    }


    return bp.bp_vector3.ToArray();
}

BezierPoints GetSegmentPoints (float gap,float acc,int index, Vector3 ls)
{
    SimpsonVec sv = SimpsonVector[index];
    Vector3 last_spawn = ls;

    BezierPoints bp = new BezierPoints();
    bp.bp_vector3 = new List<Vector3>();
    bp.bp_lastSpawn = new List<Vector3>();

    float step = 0.1f;
    float t = step;
    float lastT = new float();

    while (t >= 0 && t <= 1f)
    {
        while (t < 1f && Vector3.Distance(Bezier.GetPoint(sv.A,sv.B,sv.C,sv.D,t), last_spawn) < gap){
            t += step;}
        step /= acc;
        while (t > lastT && Vector3.Distance(Bezier.GetPoint(sv.A,sv.B,sv.C,sv.D,t), last_spawn) > gap){
            t -= step;}
        step /= acc;
        if (t > 1f || t < lastT){
            break;}
        if(step < 0.000001f){
            last_spawn = Bezier.GetPoint(sv.A,sv.B,sv.C,sv.D,t);
            bp.bp_vector3.Add(last_spawn + transform.position);
            lastT = t;
            step = 0.1f;
        }
    }
    bp.bp_lastSpawn.Add(last_spawn);
    return bp;
}

Structs: 结构:

public struct SimpsonVec{
    [SerializeField] public Vector3 A;
    [SerializeField] public Vector3 B;
    [SerializeField] public Vector3 C;
    [SerializeField] public Vector3 D;
}

public struct  BezierPoints
{
    [SerializeField] public List<Vector3> bp_vector3;
    [SerializeField] public List<Vector3> bp_lastSpawn; 
}

Helper Methods: 帮手方法:

public SimpsonVec SV_Setup(int index){
     SimpsonVec sv;
     sv.A = points[index];
     sv.B = points[index+1];
     sv.C = points[index+2];
     sv.D = points[index+3];
     return sv;

 }
 public SimpsonVec[] SV_SETUP_ALL(){
     SimpsonVec[] sv = new SimpsonVec[points.Length / 3];
     for(int i = 0; i<points.Length / 3;i++){
         sv[i] = SV_Setup(i*3);
     }
     return sv;
 }
 public Vector3 GetPoint (Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t) {
     t = Mathf.Clamp01(t);
     float OneMinusT = 1f - t;
     return
         OneMinusT * OneMinusT * OneMinusT * p0 +
         3f * OneMinusT * OneMinusT * t * p1 +
         3f * OneMinusT * t * t * p2 +
         t * t * t * p3;
 }

You need to draw your curve already anyway, so keep the curve's lookup table and either precalculate the distances at each entry, or binary-search your way to victory by picking a t value, computing the distance, and then moving half that t value up/down if you're off, and repeating that until you've hit the desired precision. 您需要绘制曲线已经无论如何,因此保持曲线的查找表,要么预先计算的距离在每个条目,或通过挑选自己的方式二进制搜索胜利t值,计算距离,然后移动一半的t价值高达/如果你关闭了,请重复,直到你达到所需的精度。 And because binary searching is crazy efficient, you get there in a negligible number of tries. 而且因为二进制搜索是疯狂有效的,所以你在那里尝试的次数可以忽略不计。

See https://pomax.github.io/bezierinfo/#tracing for a rationale, https://pomax.github.io/bezierinfo/#arclength for computing the length of a curve (with https://pomax.github.io/bezierinfo/#splitting as obvious section on getting the value you need to determine the length of a curve at some point t ), and "all of https://pomax.github.io/bezierinfo for more information", really. 看到https://pomax.github.io/bezierinfo/#tracing一个理由, https://pomax.github.io/bezierinfo/#arclength用于计算曲线的长度(与HTTPS://pomax.github。 io / bezierinfo /#splitting作为显而易见的部分,获取确定曲线长度所需的值t ),以及“所有https://pomax.github.io/bezierinfo获取更多信息”,真的。

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM