简体   繁体   English

计算 n 元笛卡尔积

[英]Calculate n-ary Cartesian Product

Given two lists, I can produce a list of all permutations the Cartesian Product of these two lists:给定两个列表,我可以生成这两个列表的笛卡尔积的 所有排列 列表:

permute :: [a] -> [a] -> [[a]]
permute xs ys = [ [x, y] | x <- xs, y <- ys ]

Example> permute [1,2] [3,4] == [ [1,3], [1,4], [2,3], [2,4] ]

How do I extend permute so that instead of taking two lists, it takes a list (length n) of lists and returns a list of lists (length n)我如何扩展 permute 以便它不采用两个列表,而是采用列表的列表(长度 n)并返回列表的列表(长度 n)

permute :: [[a]] -> [[a]]

Example> permute [ [1,2], [3,4], [5,6] ]
            == [ [1,3,5], [1,3,6], [1,4,5], [1,4,6] ] --etc

I couldn't find anything relevant on Hoogle.. the only function matching the signature was transpose , which doesn't produce the desired output.我在 Hoogle 上找不到任何相关内容。唯一匹配签名的函数是transpose ,它不会产生所需的输出。

Edit: I think the 2-list version of this is essentially the Cartesian Product , but I can't wrap my head around implementing the n-ary Cartesian Product .编辑:我认为这个 2-list 版本本质上是Cartesian Product ,但我无法围绕实现n-ary Cartesian Product Any pointers?任何指针?

Prelude> sequence [[1,2],[3,4],[5,6]]
[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

I found Eric Lippert's article on computing Cartesian product with LINQ quite helpful in improving my understanding of what was going on.我发现 Eric Lippert 关于使用 LINQ 计算笛卡尔积的文章对提高我对正在发生的事情的理解很有帮助。 Here's a more-or-less direct translation:这是或多或少的直接翻译:

cartesianProduct :: [[a]] -> [[a]]
cartesianProduct sequences = foldr aggregator [[]] sequences
                   where aggregator sequence accumulator = 
                         [ item:accseq |item <- sequence, accseq <- accumulator ]

Or with more "Haskell-y" terse, meaningless parameter names ;)或者使用更多“Haskell-y”简洁、无意义的参数名称;)

cartesianProduct = foldr f [[]]
                    where f l a = [ x:xs | x <- l, xs <- a ]

This winds up being quite similar to sclv posted after all.毕竟这与发布的 sclv 非常相似。

Here is my way of implementing it simply, using only list comprehensions.这是我简单地实现它的方式,仅使用列表推导式。

crossProduct :: [[a]] -> [[a]]
crossProduct (axis:[]) = [ [v] | v <- axis ]
crossProduct (axis:rest) = [ v:r | v <- axis, r <- crossProduct rest ]

As a supplement to jleedev's answer (couldn't format this in the comments):作为 jleedev 答案的补充(无法在评论中对此进行格式化):

A quick unchecked substitution of list functions for monadic ones:对 monadic 函数的列表函数的快速未经检查的替换:

sequence ms = foldr k (return []) ms
   where
    k m m' = do { x <- m; xs <- m'; return (x:xs) }

.... ....

    k m m' = m >>= \x -> m' >>= \xs -> [x:xs]
    k m m' = flip concatMap m $ \x -> flip concatMap m' $ \xs -> [x:xs]
    k m m' = concatMap (\x -> concatMap (\xs -> [x:xs]) m') m

.... ....

sequence ms = foldr k ([[]]) ms
   where
     k m m' = concatMap (\x -> concatMap (\xs -> [x:xs]) m') m

If you want to have more control over the output, you can use a list as applicative functor, eg:如果你想对输出有更多的控制,你可以使用列表作为应用函子,例如:

(\x y z -> [x,y,­z]) <$>  [1,2]­ <*> [4,5]­ <*> [6,7]

Let's say you want a list of tuples instead:假设您想要一个元组列表:

(\x y z -> (x,y,­z)) <$>  [1,2]­ <*> [4,5]­ <*> [6,7]

And it looks kind of cool, too...而且看起来也很酷……

You can do this in 2 ways:您可以通过两种方式执行此操作:

  1. Using list comprehension使用列表理解
 cp :: [[a]] -> [[a]] cp [] = [[]] cp (xs:xss) = [ x:ys | x <- xs, ys <- cp xss ]
  1. Using a fold使用折叠
 cp1 :: [[a]] -> [[a]] cp1 xs = foldr f [[]] xs where f xs xss = [x:ys | x <- xs, ys <- xss]

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM