繁体   English   中英

使用同步方法而不是同步块有优势吗?

[英]Is there an advantage to use a Synchronized Method instead of a Synchronized Block?

任何人都可以通过示例告诉我同步方法相对于同步块的优势吗?

谁能通过一个例子告诉我同步方法相对于同步块的优势? 谢谢。

与块相比,使用同步方法没有明显的优势。

也许唯一的(但我不会称其为优势)是您不需要包含对象引用this

方法:

public synchronized void method() { // blocks "this" from here.... 
    ...
    ...
    ...
} // to here

堵塞:

public void method() { 
    synchronized( this ) { // blocks "this" from here .... 
        ....
        ....
        ....
    }  // to here...
}

看? 完全没有优势。

确实比方法有优势,主要是在灵活性方面,因为您可以使用另一个对象作为锁,而同步方法将锁定整个对象。

相比:

// locks the whole object
... 
private synchronized void someInputRelatedWork() {
    ... 
}
private synchronized void someOutputRelatedWork() {
    ... 
}

对比

// Using specific locks
Object inputLock = new Object();
Object outputLock = new Object();

private void someInputRelatedWork() {
    synchronized(inputLock) { 
        ... 
    } 
}
private void someOutputRelatedWork() {
    synchronized(outputLock) { 
        ... 
    }
}

此外,如果方法增长,您仍然可以保持同步部分分开:

 private void method() {
     ... code here
     ... code here
     ... code here
    synchronized( lock ) { 
        ... very few lines of code here
    }
     ... code here
     ... code here
     ... code here
     ... code here
}

唯一真正的区别是同步块可以选择它同步的对象。 同步方法只能使用'this' (或同步类方法的相应类实例)。 例如,这些在语义上是等价的:

synchronized void foo() {
  ...
}

void foo() {
    synchronized (this) {
      ...
    }
}

后者更灵活,因为它可以竞争任何对象的关联锁,通常是成员变量。 它也更加细化,因为您可以在块之前和之后执行并发代码,但仍然在方法内。 当然,您可以通过将并发代码重构为单独的非同步方法来轻松使用同步方法。 使用使代码更易于理解的方法。

同步方法

优点:

  • 您的 IDE 可以指示同步方法。
  • 语法更紧凑。
  • 强制将同步块拆分为单独的方法。

缺点:

  • 与此同步,因此外部人员也可以与它同步。
  • 将代码移到同步块之外更加困难。

同步块

优点:

  • 允许对锁使用私有变量,从而强制将锁留在类中。
  • 可以通过搜索对变量的引用来找到同步块。

缺点:

  • 语法更复杂,因此使代码更难阅读。

就个人而言,我更喜欢将同步方法与只关注需要同步的东西的类一起使用。 这样的类应该尽可能小,因此应该很容易检查同步。 其他人应该不需要关心同步。

主要的区别是,如果使用一个同步块则可能比以外的对象,其允许更加灵活上锁定。

假设您有一个消息队列和多个消息生产者和消费者。 我们不希望生产者相互干扰,但消费者应该能够在不必等待生产者的情况下检索消息。 所以我们只需创建一个对象

Object writeLock = new Object();

从现在开始,每次生产者想要添加新消息时,我们都会锁定它:

synchronized(writeLock){
  // do something
}

所以消费者仍然可以阅读,而生产者将被锁定。

同步方法

同步方法有两个效果。
首先,当一个线程正在为一个对象执行同步方法时,所有其他调用同一个对象的同步方法的线程都会阻塞(挂起执行),直到第一个线程完成对对象的处理。

其次,当同步方法退出时,它会自动与任何后续对同一对象的同步方法调用建立先发生关系。 这保证了对象状态的更改对所有线程都是可见的。

请注意,构造函数不能同步——在构造函数中使用 synchronized 关键字是一个语法错误。 同步构造函数没有意义,因为只有创建对象的线程才能在构造对象时访问它。

同步语句

与同步方法不同,同步语句必须指定提供内在锁的对象:大多数情况下,我使用它来同步对列表或映射的访问,但我不想阻止对对象所有方法的访问。

问:内在锁和同步 同步是围绕称为内在锁或监视器锁的内部实体构建的。 (API 规范通常将此实体简称为“监视器”。)内在锁在同步的两个方面都发挥作用:强制对对象状态进行独占访问并建立对可见性至关重要的发生前关系。

每个对象都有一个与之关联的内在锁。 按照惯例,需要对对象字段进行独占且一致访问的线程必须在访问对象之前获取对象的内在锁,然后在访问完成后释放内在锁。 线程在获取锁和释放锁之间被称为拥有内在锁。 只要一个线程拥有一个内在锁,其他线程就不能获得相同的锁。 另一个线程在尝试获取锁时会阻塞。

package test;

public class SynchTest implements Runnable {  
    private int c = 0;

    public static void main(String[] args) {
        new SynchTest().test();
    }

    public void test() {
        // Create the object with the run() method
        Runnable runnable = new SynchTest();
        Runnable runnable2 = new SynchTest();
        // Create the thread supplying it with the runnable object
        Thread thread = new Thread(runnable,"thread-1");
        Thread thread2 = new Thread(runnable,"thread-2");
//      Here the key point is passing same object, if you pass runnable2 for thread2,
//      then its not applicable for synchronization test and that wont give expected
//      output Synchronization method means "it is not possible for two invocations
//      of synchronized methods on the same object to interleave"

        // Start the thread
        thread.start();
        thread2.start();
    }

    public synchronized  void increment() {
        System.out.println("Begin thread " + Thread.currentThread().getName());
        System.out.println(this.hashCode() + "Value of C = " + c);
//      If we uncomment this for synchronized block, then the result would be different
//      synchronized(this) {
            for (int i = 0; i < 9999999; i++) {
                c += i;
            }
//      }
        System.out.println("End thread " + Thread.currentThread().getName());
    }

//    public synchronized void decrement() {
//        System.out.println("Decrement " + Thread.currentThread().getName());
//    }

    public int value() {
        return c;
    }

    @Override
    public void run() {
        this.increment();
    }
}

使用同步方法、块和不同步交叉检查不同的输出。

注意:静态同步方法和块适用于 Class 对象。

public class MyClass {
   // locks MyClass.class
   public static synchronized void foo() {
// do something
   }

   // similar
   public static void foo() {
      synchronized(MyClass.class) {
// do something
      }
   }
}

当 Java 编译器将您的源代码转换为字节码时,它处理同步方法和同步块的方式非常不同。

当 JVM 执行同步方法时,执行线程识别出该方法的 method_info 结构设置了 ACC_SYNCHRONIZED 标志,然后它会自动获取对象的锁,调用该方法,并释放锁。 如果发生异常,线程会自动释放锁。

另一方面,同步方法块绕过了 JVM 对获取对象的锁和异常处理的内置支持,并要求以字节码显式编写功能。 如果您阅读带有同步块的方法的字节码,您将看到十多个附加操作来管理此功能。

这显示了生成同步方法和同步块的调用:

public class SynchronizationExample {
    private int i;

    public synchronized int synchronizedMethodGet() {
        return i;
    }

    public int synchronizedBlockGet() {
        synchronized( this ) {
            return i;
        }
    }
}

synchronizedMethodGet()方法生成以下字节码:

0:  aload_0
1:  getfield
2:  nop
3:  iconst_m1
4:  ireturn

这是来自synchronizedBlockGet()方法的字节代码:

0:  aload_0
1:  dup
2:  astore_1
3:  monitorenter
4:  aload_0
5:  getfield
6:  nop
7:  iconst_m1
8:  aload_1
9:  monitorexit
10: ireturn
11: astore_2
12: aload_1
13: monitorexit
14: aload_2
15: athrow

同步方法和块之间的一个显着区别是,同步块通常会减少锁的范围。 由于锁的范围与性能成反比,因此只锁定代码的关键部分总是更好。 使用同步块的最佳示例之一是 单例模式中的 双重检查锁定,其中我们只锁定用于创建单例实例的代码的关键部分,而不是锁定整个getInstance()方法。 这极大地提高了性能,因为只需要锁定一两次。

使用同步方法时,如果同时使用静态同步方法和非静态同步方法,则需要格外小心。

大多数情况下,我使用它来同步对列表或地图的访问,但我不想阻止对对象的所有方法的访问。

在下面的代码中,修改列表的线程不会阻塞等待正在修改映射的线程。 如果方法在对象上同步,则每个方法都必须等待,即使它们所做的修改不会冲突。

private List<Foo> myList = new ArrayList<Foo>();
private Map<String,Bar) myMap = new HashMap<String,Bar>();

public void put( String s, Bar b ) {
  synchronized( myMap ) {
    myMap.put( s,b );
    // then some thing that may take a while like a database access or RPC or notifying listeners
  }
}

public void hasKey( String s, ) {
  synchronized( myMap ) {
    myMap.hasKey( s );
  }
}

public void add( Foo f ) {
  synchronized( myList ) {
    myList.add( f );
// then some thing that may take a while like a database access or RPC or notifying listeners
  }
}

public Thing getMedianFoo() {
  Foo med = null;
  synchronized( myList ) {
    Collections.sort(myList);
    med = myList.get(myList.size()/2); 
  }
  return med;
}

使用同步块,您可以拥有多个同步器,以便多个同时发生但不冲突的事情可以同时进行。

可以使用反射 API 检查同步方法。 这对于测试一些合约很有用,例如模型中的所有方法都是同步的

以下代码段打印了 Hashtable 的所有同步方法:

for (Method m : Hashtable.class.getMethods()) {
        if (Modifier.isSynchronized(m.getModifiers())) {
            System.out.println(m);
        }
}

使用同步块的重要注意事项:小心你使用的锁对象!

上面来自 user2277816 的代码片段说明了这一点,因为对字符串文字的引用被用作锁定对象。 意识到字符串文字会自动嵌入 Java 中,您应该开始看到问题:在文字“锁”上同步的每段代码都共享相同的锁! 这很容易导致完全不相关的代码段出现死锁。

您需要小心的不仅仅是 String 对象。 装箱原语也是一种危险,因为自动装箱和 valueOf 方法可以重用相同的对象,具体取决于值。

有关更多信息,请参阅: https : //www.securecoding.cert.org/confluence/display/java/LCK01-J.+Do+not+synchronize+on+objects+that+may+be+reused

通常在方法级别使用锁太粗鲁了。 为什么要通过锁定整个方法来锁定一段不访问任何共享资源的代码。 由于每个对象都有一个锁,因此您可以创建虚拟对象来实现块级同步。 块级更有效,因为它不会锁定整个方法。

这里有一些例子

方法级别

class MethodLevel {

  //shared among threads
SharedResource x, y ;

public void synchronized method1() {
   //multiple threads can't access
}
public void synchronized method2() {
  //multiple threads can't access
}

 public void method3() {
  //not synchronized
  //multiple threads can access
 }
}

块级

class BlockLevel {
  //shared among threads
  SharedResource x, y ;

  //dummy objects for locking
  Object xLock = new Object();
  Object yLock = new Object();

    public void method1() {
     synchronized(xLock){
    //access x here. thread safe
    }

    //do something here but don't use SharedResource x, y
    // because will not be thread-safe
     synchronized(xLock) {
       synchronized(yLock) {
      //access x,y here. thread safe
      }
     }

     //do something here but don't use SharedResource x, y
     //because will not be thread-safe
    }//end of method1
 }

[编辑]

对于像VectorHashtable这样的Collection ,当ArrayListHashMap不同步时,它们是同步的,您需要设置 synchronized 关键字或调用 Collections 同步方法:

Map myMap = Collections.synchronizedMap (myMap); // single lock for the entire map
List myList = Collections.synchronizedList (myList); // single lock for the entire list

唯一的区别:同步块允许与同步方法不同的粒度锁定

通过避免内存不一致错误,基本上已使用synchronized块或方法来编写线程安全代码。

这个问题很老了,在过去的 7 年里,很多事情都发生了变化。 为线程安全引入了新的编程结构。

您可以通过使用高级并发 API 而不是synchronied块来实现线程安全。 此文档页面提供了实现线程安全的良好编程结构。

锁定对象支持简化许多并发应用程序的锁定习惯用法。

Executors定义了一个用于启动和管理线程的高级 API。 java.util.concurrent 提供的 Executor 实现提供了适合大型应用程序的线程池管理。

并发集合可以更轻松地管理大型数据集合,并且可以大大减少同步需求。

原子变量具有最小化同步并有助于避免内存一致性错误的功能。

ThreadLocalRandom (在 JDK 7 中)提供了从多个线程高效生成伪随机数的功能。

更好地替代 synchronized 是ReentrantLock ,它使用Lock API

可重入互斥锁与使用同步方法和语句访问的隐式监视器锁具有相同的基本行为和语义,但具有扩展功能。

带锁的例子:

class X {
   private final ReentrantLock lock = new ReentrantLock();
   // ...

   public void m() {
     lock.lock();  // block until condition holds
     try {
       // ... method body
     } finally {
       lock.unlock()
     }
   }
 }

其他编程结构也请参考java.util.concurrentjava.util.concurrent.atomic包。

也参考这个相关问题:

同步与锁定

同步方法用于锁定所有对象同步块用于锁定特定对象

一般来说,除了明确说明正在使用的对象的监视器与隐式的 this 对象之外,这些基本上是相同的。 我认为有时被忽略的同步方法的一个缺点是,在使用“this”引用进行同步时,您将外部对象锁定在同一对象上的可能性保持开放。 如果您遇到它,那可能是一个非常微妙的错误。 在内部显式对象或其他现有字段上进行同步可以避免此问题,完全封装同步。

正如这里已经说过的,同步块可以使用用户定义的变量作为锁定对象,当同步函数只使用“this”时。 当然,您可以对应该同步的功能区域进行操作。 但是每个人都说同步函数和使用“this”作为锁定对象覆盖整个函数的块之间没有区别。 事实并非如此,不同之处在于两种情况下都会生成的字节码。 在同步块使用的情况下,应分配局部变量,该变量保存对“this”的引用。 因此,我们将有更大的函数大小(如果您只有少量函数,则不相关)。

您可以在此处找到有关差异的更详细说明: http : //www.artima.com/insidejvm/ed2/threadsynchP.html

实际上,同步方法相对于同步块的优势在于它们更能抵抗白痴; 因为您不能选择任意对象进行锁定,所以您不能滥用同步方法语法来做愚蠢的事情,例如锁定字符串文字或锁定从线程下更改的可变字段的内容。

另一方面,使用同步方法,您无法保护锁不被任何可以获得对象引用的线程获取。

因此,使用 synchronized 作为方法的修饰符可以更好地保护您的同事免受伤害,而将同步块与私有 final 锁对象结合使用可以更好地保护您自己的代码免受同事的伤害。

在同步方法的情况下,将在对象上获取锁。 但是如果你使用同步块,你可以选择指定一个对象来获取锁。

例子 :

    Class Example {
    String test = "abc";
    // lock will be acquired on String  test object.
    synchronized (test) {
        // do something
    }

   lock will be acquired on Example Object
   public synchronized void testMethod() {
     // do some thing
   } 

   }

我知道这是一个老问题,但是通过快速阅读这里的回复,我真的没有看到有人提到有时synchronized方法可能是错误的锁。
来自 Java 并发实践(第 72 页):

public class ListHelper<E> {
  public List<E> list = Collections.syncrhonizedList(new ArrayList<>());
...

public syncrhonized boolean putIfAbsent(E x) {
 boolean absent = !list.contains(x);
if(absent) {
 list.add(x);
}
return absent;
}

上面的代码看起来是线程安全的。 然而,实际上并非如此。 在这种情况下,锁是在类的实例上获得的。 但是,列表可能会被另一个不使用该方法的线程修改。 正确的方法是使用

public boolean putIfAbsent(E x) {
 synchronized(list) {
  boolean absent = !list.contains(x);
  if(absent) {
    list.add(x);
  }
  return absent;
}
}

上面的代码会阻止所有尝试修改列表的线程修改列表,直到同步块完成。

来自 Java 规范摘要: http : //www.cs.cornell.edu/andru/javaspec/17.doc.html

synchronized 语句(第 14.17 节)计算对对象的引用; 然后它尝试对该对象执行锁定操作,并且在锁定操作成功完成之前不会继续进行。 ...

同步方法(第 8.4.3.5 节)在调用时自动执行锁定操作; 它的主体在锁定操作成功完成之前不会执行。 如果该方法是一个实例方法,它会锁定与调用它的实例相关联的锁(即,在方法主体执行期间将被称为 this 的对象)。 如果方法是静态的,它会锁定与代表定义该方法的类的 Class 对象关联的锁。 ...

基于这些描述,我会说以前的大多数答案都是正确的,并且同步方法可能对静态方法特别有用,否则您将不得不弄清楚如何获取“代表方法所在类的类对象”定义。”

编辑:我最初认为这些是实际 Java 规范的引述。 澄清此页面只是规范的摘要/解释

TLDR; 既不使用synchronized修饰符也不使用synchronized(this){...}表达式,而是使用synchronized(myLock){...} ,其中myLock是保存私有对象的最终实例字段。


在方法声明上使用synchronized修饰符和在方法体中使用synchronized(..){ }表达式之间的区别是:

  • 方法签名上指定的synchronized修饰符
    1. 在生成的 JavaDoc 中可见,
    2. 在测试Modifier.SYNCHRONIZED的方法修饰符时,可以通过反射以编程方式确定,
    3. synchronized(this) { .... }相比,需要更少的输入和缩进,并且
    4. (取决于您的 IDE)在类大纲和代码完成中可见,
    5. 在非静态方法上声明时使用this对象作为锁,或者在静态方法上声明时使用封闭类。
  • synchronized(...){...}表达式允许您
    1. 只同步方法主体部分的执行,
    2. 在构造函数或( 静态)初始化块中使用,
    3. 选择控制同步访问的锁对象。

但是,使用synchronized修饰符或synchronized(...) {...}this作为锁定对象(如synchronized(this) {...} ),具有相同的缺点。 两者都使用它自己的实例作为同步锁对象。 这是危险的,因为不仅对象本身,而且任何其他持有对该对象的引用的外部对象/代码也可以将其用作同步锁,并具有潜在的严重副作用(性能下降和死锁)。

因此,最佳实践是既不使用synchronized修饰符,也不将synchronized(...)表达式与this结合用作锁定对象,而是使用this对象私有的锁定对象。 例如:

public class MyService {
    private final lock = new Object();

    public void doThis() {
       synchronized(lock) {
          // do code that requires synchronous execution
        }
    }

    public void doThat() {
       synchronized(lock) {
          // do code that requires synchronous execution
        }
    }
}

您也可以使用多个锁对象,但需要特别注意确保在嵌套使用时不会导致死锁。

public class MyService {
    private final lock1 = new Object();
    private final lock2 = new Object();

    public void doThis() {
       synchronized(lock1) {
          synchronized(lock2) {
              // code here is guaranteed not to be executes at the same time
              // as the synchronized code in doThat() and doMore().
          }
    }

    public void doThat() {
       synchronized(lock1) {
              // code here is guaranteed not to be executes at the same time
              // as the synchronized code in doThis().
              // doMore() may execute concurrently
        }
    }

    public void doMore() {
       synchronized(lock2) {
              // code here is guaranteed not to be executes at the same time
              // as the synchronized code in doThis().
              // doThat() may execute concurrently
        }
    }
}

我想这个问题是关于线程安全单例带有双重检查锁定的延迟初始化之间的区别。 当我需要实现一些特定的单例时,我总是参考这篇文章。

好吧,这是一个线程安全的单例

// Java program to create Thread Safe 
// Singleton class 
public class GFG  
{ 
  // private instance, so that it can be 
  // accessed by only by getInstance() method 
  private static GFG instance; 

  private GFG()  
  { 
    // private constructor 
  } 

 //synchronized method to control simultaneous access 
  synchronized public static GFG getInstance()  
  { 
    if (instance == null)  
    { 
      // if instance is null, initialize 
      instance = new GFG(); 
    } 
    return instance; 
  } 
} 

优点:

  1. 延迟初始化是可能的。

  2. 它是线程安全的。

缺点:

  1. getInstance() 方法是同步的,因此它会导致性能下降,因为多个线程无法同时访问它。

这是一个带有双重检查锁定延迟初始化

// Java code to explain double check locking 
public class GFG  
{ 
  // private instance, so that it can be 
  // accessed by only by getInstance() method 
  private static GFG instance; 

  private GFG()  
  { 
    // private constructor 
  } 

  public static GFG getInstance() 
  { 
    if (instance == null)  
    { 
      //synchronized block to remove overhead 
      synchronized (GFG.class) 
      { 
        if(instance==null) 
        { 
          // if instance is null, initialize 
          instance = new GFG(); 
        } 

      } 
    } 
    return instance; 
  } 
} 

优点:

  1. 延迟初始化是可能的。

  2. 它也是线程安全的。

  3. 克服了由于同步关键字导致的性能下降。

缺点:

  1. 第一次,它会影响性能。

  2. 作为缺点。 双重检查锁定方法是可以忍受的,因此可以用于高性能多线程应用程序。

请参阅这篇文章了解更多详情:

https://www.geeksforgeeks.org/java-singleton-design-pattern-practices-examples/

与线程同步。 1) 永远不要在它不起作用的线程中使用 synchronized(this)。 与 (this) 同步使用当前线程作为锁定线程对象。 由于每个线程独立于其他线程,因此没有同步的协调。 2) 代码测试表明,在 Mac 上的 Java 1.6 中,方法同步不起作用。 3) synchronized(lockObj) 其中 lockObj 是所有同步它的线程的公共共享对象将起作用。 4) ReenterantLock.lock() 和 .unlock() 工作。 有关此内容,请参阅 Java 教程。

以下代码显示了这些要点。 它还包含将替代 ArrayList 的线程安全 Vector,以表明添加到 Vector 的许多线程不会丢失任何信息,而与 ArrayList 相同可能会丢失信息。 0) 当前代码显示由于竞争条件而丢失信息 A) 注释当前标记的 A 行,并取消注释其上方的 A 行,然后运行,方法丢失数据但不应该。 B) 反向步骤 A,取消注释 B 和 // 结束块 }。 然后运行查看结果没有数据丢失 C) 注释掉 B,取消注释 C。运行,看到同步 (this) 丢失数据,正如预期的那样。 没有时间完成所有的变化,希望这会有所帮助。 如果在 (this) 上同步,或方法同步有效,请说明您测试的 Java 和操作系统版本。 谢谢你。

import java.util.*;

/** RaceCondition - Shows that when multiple threads compete for resources 
     thread one may grab the resource expecting to update a particular 
     area but is removed from the CPU before finishing.  Thread one still 
     points to that resource.  Then thread two grabs that resource and 
     completes the update.  Then thread one gets to complete the update, 
     which over writes thread two's work.
     DEMO:  1) Run as is - see missing counts from race condition, Run severa times, values change  
            2) Uncomment "synchronized(countLock){ }" - see counts work
            Synchronized creates a lock on that block of code, no other threads can 
            execute code within a block that another thread has a lock.
        3) Comment ArrayList, unComment Vector - See no loss in collection
            Vectors work like ArrayList, but Vectors are "Thread Safe"
         May use this code as long as attribution to the author remains intact.
     /mf
*/ 

public class RaceCondition {
    private ArrayList<Integer> raceList = new ArrayList<Integer>(); // simple add(#)
//  private Vector<Integer> raceList = new Vector<Integer>(); // simple add(#)

    private String countLock="lock";    // Object use for locking the raceCount
    private int raceCount = 0;        // simple add 1 to this counter
    private int MAX = 10000;        // Do this 10,000 times
    private int NUM_THREADS = 100;    // Create 100 threads

    public static void main(String [] args) {
    new RaceCondition();
    }

    public RaceCondition() {
    ArrayList<Thread> arT = new ArrayList<Thread>();

    // Create thread objects, add them to an array list
    for( int i=0; i<NUM_THREADS; i++){
        Thread rt = new RaceThread( ); // i );
        arT.add( rt );
    }

    // Start all object at once.
    for( Thread rt : arT ){
        rt.start();
    }

    // Wait for all threads to finish before we can print totals created by threads
    for( int i=0; i<NUM_THREADS; i++){
        try { arT.get(i).join(); }
        catch( InterruptedException ie ) { System.out.println("Interrupted thread "+i); }
    }

    // All threads finished, print the summary information.
    // (Try to print this informaiton without the join loop above)
    System.out.printf("\nRace condition, should have %,d. Really have %,d in array, and count of %,d.\n",
                MAX*NUM_THREADS, raceList.size(), raceCount );
    System.out.printf("Array lost %,d. Count lost %,d\n",
             MAX*NUM_THREADS-raceList.size(), MAX*NUM_THREADS-raceCount );
    }   // end RaceCondition constructor



    class RaceThread extends Thread {
    public void run() {
        for ( int i=0; i<MAX; i++){
        try {
            update( i );        
        }    // These  catches show when one thread steps on another's values
        catch( ArrayIndexOutOfBoundsException ai ){ System.out.print("A"); }
        catch( OutOfMemoryError oome ) { System.out.print("O"); }
        }
    }

    // so we don't lose counts, need to synchronize on some object, not primitive
    // Created "countLock" to show how this can work.
    // Comment out the synchronized and ending {, see that we lose counts.

//    public synchronized void update(int i){   // use A
    public void update(int i){                  // remove this when adding A
//      synchronized(countLock){            // or B
//      synchronized(this){             // or C
        raceCount = raceCount + 1;
        raceList.add( i );      // use Vector  
//          }           // end block for B or C
    }   // end update

    }   // end RaceThread inner class


} // end RaceCondition outter class

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM