繁体   English   中英

为什么这个SIMD乘法不比非SIMD乘法快?

[英]Why is this SIMD multiplication not faster than non-SIMD multiplication?

让我们假设我们有一个函数,每个函数乘以两个1000000双精度数组。 在C / C ++中,函数如下所示:

void mul_c(double* a, double* b)
{
    for (int i = 0; i != 1000000; ++i)
    {
        a[i] = a[i] * b[i];
    }
}

编译器使用-O2生成以下程序集:

mul_c(double*, double*):
        xor     eax, eax
.L2:
        movsd   xmm0, QWORD PTR [rdi+rax]
        mulsd   xmm0, QWORD PTR [rsi+rax]
        movsd   QWORD PTR [rdi+rax], xmm0
        add     rax, 8
        cmp     rax, 8000000
        jne     .L2
        rep ret

从上面的程序集看来,编译器似乎使用了SIMD指令,但每次迭代只会增加一倍。 所以我决定xmm0联汇编中编写相同的函数,在那里我充分利用xmm0寄存器并xmm0乘以两个双精度:

void mul_asm(double* a, double* b)
{
    asm volatile
    (
        ".intel_syntax noprefix             \n\t"
        "xor    rax, rax                    \n\t"
        "0:                                 \n\t"
        "movupd xmm0, xmmword ptr [rdi+rax] \n\t"
        "mulpd  xmm0, xmmword ptr [rsi+rax] \n\t"
        "movupd xmmword ptr [rdi+rax], xmm0 \n\t"
        "add    rax, 16                     \n\t"
        "cmp    rax, 8000000                \n\t"
        "jne    0b                          \n\t"
        ".att_syntax noprefix               \n\t"

        : 
        : "D" (a), "S" (b)
        : "memory", "cc"
    );
}

在单独测量这两个函数的执行时间之后,它们似乎都需要1毫秒才能完成:

> gcc -O2 main.cpp
> ./a.out < input

mul_c: 1 ms
mul_asm: 1 ms

[a lot of doubles...]

我期望SIMD实现至少快两倍(0 ms),因为乘法/存储器指令的数量只有一半。

所以我的问题是: 当SIMD实现只执行乘法/内存指令的一半时,为什么SIMD实现不比普通的C / C ++实现快?

这是完整的程序:

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

void mul_c(double* a, double* b)
{
    for (int i = 0; i != 1000000; ++i)
    {
        a[i] = a[i] * b[i];
    }
}

void mul_asm(double* a, double* b)
{
    asm volatile
    (
        ".intel_syntax noprefix             \n\t"
        "xor    rax, rax                    \n\t"
        "0:                                 \n\t"
        "movupd xmm0, xmmword ptr [rdi+rax] \n\t"
        "mulpd  xmm0, xmmword ptr [rsi+rax] \n\t"
        "movupd xmmword ptr [rdi+rax], xmm0 \n\t"
        "add    rax, 16                     \n\t"
        "cmp    rax, 8000000                \n\t"
        "jne    0b                          \n\t"
        ".att_syntax noprefix               \n\t"

        : 
        : "D" (a), "S" (b)
        : "memory", "cc"
    );
}

int main()
{
    struct timeval t1;
    struct timeval t2;
    unsigned long long time;

    double* a = (double*)malloc(sizeof(double) * 1000000);
    double* b = (double*)malloc(sizeof(double) * 1000000);
    double* c = (double*)malloc(sizeof(double) * 1000000);

    for (int i = 0; i != 1000000; ++i)
    {
        double v;
        scanf("%lf", &v);
        a[i] = v;
        b[i] = v;
        c[i] = v;
    }

    gettimeofday(&t1, NULL);
    mul_c(a, b);
    gettimeofday(&t2, NULL);
    time = 1000 * (t2.tv_sec - t1.tv_sec) + (t2.tv_usec - t1.tv_usec) / 1000;
    printf("mul_c: %llu ms\n", time);

    gettimeofday(&t1, NULL);
    mul_asm(b, c);
    gettimeofday(&t2, NULL);
    time = 1000 * (t2.tv_sec - t1.tv_sec) + (t2.tv_usec - t1.tv_usec) / 1000;
    printf("mul_asm: %llu ms\n\n", time);

    for (int i = 0; i != 1000000; ++i)
    {
        printf("%lf\t\t\t%lf\n", a[i], b[i]);
    }

    return 0;
}

我还试图利用所有xmm寄存器(0-7)并删除指令依赖性以获得更好的并行计算:

void mul_asm(double* a, double* b)
{
    asm volatile
    (
        ".intel_syntax noprefix                 \n\t"
        "xor    rax, rax                        \n\t"
        "0:                                     \n\t"
        "movupd xmm0, xmmword ptr [rdi+rax]     \n\t"
        "movupd xmm1, xmmword ptr [rdi+rax+16]  \n\t"
        "movupd xmm2, xmmword ptr [rdi+rax+32]  \n\t"
        "movupd xmm3, xmmword ptr [rdi+rax+48]  \n\t"
        "movupd xmm4, xmmword ptr [rdi+rax+64]  \n\t"
        "movupd xmm5, xmmword ptr [rdi+rax+80]  \n\t"
        "movupd xmm6, xmmword ptr [rdi+rax+96]  \n\t"
        "movupd xmm7, xmmword ptr [rdi+rax+112] \n\t"
        "mulpd  xmm0, xmmword ptr [rsi+rax]     \n\t"
        "mulpd  xmm1, xmmword ptr [rsi+rax+16]  \n\t"
        "mulpd  xmm2, xmmword ptr [rsi+rax+32]  \n\t"
        "mulpd  xmm3, xmmword ptr [rsi+rax+48]  \n\t"
        "mulpd  xmm4, xmmword ptr [rsi+rax+64]  \n\t"
        "mulpd  xmm5, xmmword ptr [rsi+rax+80]  \n\t"
        "mulpd  xmm6, xmmword ptr [rsi+rax+96]  \n\t"
        "mulpd  xmm7, xmmword ptr [rsi+rax+112] \n\t"
        "movupd xmmword ptr [rdi+rax], xmm0     \n\t"
        "movupd xmmword ptr [rdi+rax+16], xmm1  \n\t"
        "movupd xmmword ptr [rdi+rax+32], xmm2  \n\t"
        "movupd xmmword ptr [rdi+rax+48], xmm3  \n\t"
        "movupd xmmword ptr [rdi+rax+64], xmm4  \n\t"
        "movupd xmmword ptr [rdi+rax+80], xmm5  \n\t"
        "movupd xmmword ptr [rdi+rax+96], xmm6  \n\t"
        "movupd xmmword ptr [rdi+rax+112], xmm7 \n\t"
        "add    rax, 128                        \n\t"
        "cmp    rax, 8000000                    \n\t"
        "jne    0b                              \n\t"
        ".att_syntax noprefix                   \n\t"

        : 
        : "D" (a), "S" (b)
        : "memory", "cc"
    );
}

但它仍然以1毫秒运行,与普通的C / C ++实现速度相同。


更新

正如答案/评论所建议的,我已经实现了另一种测量执行时间的方法:

#include <stdio.h>
#include <stdlib.h>

void mul_c(double* a, double* b)
{
    for (int i = 0; i != 1000000; ++i)
    {
        a[i] = a[i] * b[i];
    }
}

void mul_asm(double* a, double* b)
{
    asm volatile
    (
        ".intel_syntax noprefix             \n\t"
        "xor    rax, rax                    \n\t"
        "0:                                 \n\t"
        "movupd xmm0, xmmword ptr [rdi+rax] \n\t"
        "mulpd  xmm0, xmmword ptr [rsi+rax] \n\t"
        "movupd xmmword ptr [rdi+rax], xmm0 \n\t"
        "add    rax, 16                     \n\t"
        "cmp    rax, 8000000                \n\t"
        "jne    0b                          \n\t"
        ".att_syntax noprefix               \n\t"

        : 
        : "D" (a), "S" (b)
        : "memory", "cc"
    );
}

void mul_asm2(double* a, double* b)
{
    asm volatile
    (
        ".intel_syntax noprefix                 \n\t"
        "xor    rax, rax                        \n\t"
        "0:                                     \n\t"
        "movupd xmm0, xmmword ptr [rdi+rax]     \n\t"
        "movupd xmm1, xmmword ptr [rdi+rax+16]  \n\t"
        "movupd xmm2, xmmword ptr [rdi+rax+32]  \n\t"
        "movupd xmm3, xmmword ptr [rdi+rax+48]  \n\t"
        "movupd xmm4, xmmword ptr [rdi+rax+64]  \n\t"
        "movupd xmm5, xmmword ptr [rdi+rax+80]  \n\t"
        "movupd xmm6, xmmword ptr [rdi+rax+96]  \n\t"
        "movupd xmm7, xmmword ptr [rdi+rax+112] \n\t"
        "mulpd  xmm0, xmmword ptr [rsi+rax]     \n\t"
        "mulpd  xmm1, xmmword ptr [rsi+rax+16]  \n\t"
        "mulpd  xmm2, xmmword ptr [rsi+rax+32]  \n\t"
        "mulpd  xmm3, xmmword ptr [rsi+rax+48]  \n\t"
        "mulpd  xmm4, xmmword ptr [rsi+rax+64]  \n\t"
        "mulpd  xmm5, xmmword ptr [rsi+rax+80]  \n\t"
        "mulpd  xmm6, xmmword ptr [rsi+rax+96]  \n\t"
        "mulpd  xmm7, xmmword ptr [rsi+rax+112] \n\t"
        "movupd xmmword ptr [rdi+rax], xmm0     \n\t"
        "movupd xmmword ptr [rdi+rax+16], xmm1  \n\t"
        "movupd xmmword ptr [rdi+rax+32], xmm2  \n\t"
        "movupd xmmword ptr [rdi+rax+48], xmm3  \n\t"
        "movupd xmmword ptr [rdi+rax+64], xmm4  \n\t"
        "movupd xmmword ptr [rdi+rax+80], xmm5  \n\t"
        "movupd xmmword ptr [rdi+rax+96], xmm6  \n\t"
        "movupd xmmword ptr [rdi+rax+112], xmm7 \n\t"
        "add    rax, 128                        \n\t"
        "cmp    rax, 8000000                    \n\t"
        "jne    0b                              \n\t"
        ".att_syntax noprefix                   \n\t"

        : 
        : "D" (a), "S" (b)
        : "memory", "cc"
    );
}

unsigned long timestamp()
{
    unsigned long a;

    asm volatile
    (
        ".intel_syntax noprefix \n\t"
        "xor   rax, rax         \n\t"
        "xor   rdx, rdx         \n\t"
        "RDTSCP                 \n\t"
        "shl   rdx, 32          \n\t"
        "or    rax, rdx         \n\t"
        ".att_syntax noprefix   \n\t"

        : "=a" (a)
        : 
        : "memory", "cc"
    );

    return a;
}

int main()
{
    unsigned long t1;
    unsigned long t2;

    double* a;
    double* b;

    a = (double*)malloc(sizeof(double) * 1000000);
    b = (double*)malloc(sizeof(double) * 1000000);

    for (int i = 0; i != 1000000; ++i)
    {
        double v;
        scanf("%lf", &v);
        a[i] = v;
        b[i] = v;
    }

    t1 = timestamp();
    mul_c(a, b);
    //mul_asm(a, b);
    //mul_asm2(a, b);
    t2 = timestamp();
    printf("mul_c: %lu cycles\n\n", t2 - t1);

    for (int i = 0; i != 1000000; ++i)
    {
        printf("%lf\t\t\t%lf\n", a[i], b[i]);
    }

    return 0;
}

当我使用此测量运行程序时,我得到以下结果:

mul_c:    ~2163971628 cycles
mul_asm:  ~2532045184 cycles
mul_asm2: ~5230488    cycles <-- what???

这里有两件事值得注意,首先,周期数变化很多,我认为这是因为操作系统允许其他进程在其间运行。 在程序执行时有没有办法阻止或只计算周期? 此外,与其他两个相比, mul_asm2产生相同的输出,但它更快,怎么样?


我在我的系统上尝试了Z boson的程序和我的2个实现,得到了以下结果:

> g++ -O2 -fopenmp main.cpp
> ./a.out
mul         time 1.33, 18.08 GB/s
mul_SSE     time 1.13, 21.24 GB/s
mul_SSE_NT  time 1.51, 15.88 GB/s
mul_SSE_OMP time 0.79, 30.28 GB/s
mul_SSE_v2  time 1.12, 21.49 GB/s
mul_v2      time 1.26, 18.99 GB/s
mul_asm     time 1.12, 21.50 GB/s
mul_asm2    time 1.09, 22.08 GB/s

你的asm代码真的很好。 什么不是你衡量它的方式。 我在评论中指出你应该:

a)使用更多迭代的方式 - 现代CPU没有100万

b)使用HPT进行测量

c)使用RDTSC或RDTSCP计算实际CPU时钟

另外你为什么害怕-O3选择? 不要忘记为您的平台构建代码,因此请使用-march = native。 如果你的CPU支持AVX或AVX2编译器,将有机会产生更好的代码。

接下来的事情 - 如果你知道你的代码,给编译器一些关于别名和allignment的提示。

这是我的mul_c版本 - 是的,它是GCC特定的,但是你展示了你使用的GCC

void mul_c(double* restrict a, double* restrict b)
{
   a = __builtin_assume_aligned (a, 16);
   b = __builtin_assume_aligned (b, 16);

    for (int i = 0; i != 1000000; ++i)
    {
        a[i] = a[i] * b[i];
    }
}

它会产生:

mul_c(double*, double*):
        xor     eax, eax
.L2:
        movapd  xmm0, XMMWORD PTR [rdi+rax]
        mulpd   xmm0, XMMWORD PTR [rsi+rax]
        movaps  XMMWORD PTR [rdi+rax], xmm0
        add     rax, 16
        cmp     rax, 8000000
        jne     .L2
        rep ret

如果你有AVX2并确保数据是32字节对齐它将成为

mul_c(double*, double*):
        xor     eax, eax
.L2:
        vmovapd ymm0, YMMWORD PTR [rdi+rax]
        vmulpd  ymm0, ymm0, YMMWORD PTR [rsi+rax]
        vmovapd YMMWORD PTR [rdi+rax], ymm0
        add     rax, 32
        cmp     rax, 8000000
        jne     .L2
        vzeroupper
        ret

所以如果编译器可以为你做的话,不需要手工制作的asm;)

我用于以前基准测试的计时功能存在一个主要错误 这大大低估了没有矢量化的带宽以及其他测量。 此外,还有另一个问题是高估了由于读取但未写入的阵列上的COW而导致的带宽。 最后,我使用的最大带宽不正确。 我已经用更正更新了我的答案,我在答案结尾处留下了旧答案。


您的操作是内存带宽限制。 这意味着CPU花费大部分时间等待慢速内存读写。 对此的一个很好的解释可以在这里找到: 为什么矢量化循环没有性能改进

但是,我不得不对该答案中的一个陈述略有不同意见。

因此无论它如何优化(矢量化,展开等等),它都不会变得更快。

事实上,即使在内存带宽限制操作中,矢量化,展开和多线程也可以显着增加带宽。 原因是很难获得最大内存带宽。 可以在此处找到对此的一个很好的解释: https//stackoverflow.com/a/25187492/2542702

我的其余部分将展示矢量化和多线程如何更接近最大内存带宽。

我的测试系统:Ubuntu 16.10,Skylake(i7-6700HQ@2.60GHz),32GB RAM,双通道DDR4 @ 2400 GHz。 我系统的最大带宽为38.4 GB / s。

从下面的代码我产生下表。 我使用OMP_NUM_THREADS设置线程数,例如export OMP_NUM_THREADS=4 效率是bandwidth/max_bandwidth

-O2 -march=native -fopenmp
Threads Efficiency
1       59.2%
2       76.6%
4       74.3%
8       70.7%

-O2 -march=native -fopenmp -funroll-loops
1       55.8%
2       76.5%
4       72.1%
8       72.2%

-O3 -march=native -fopenmp
1       63.9%
2       74.6%
4       63.9%
8       63.2%

-O3 -march=native -fopenmp -mprefer-avx128
1       67.8%
2       76.0%
4       63.9%
8       63.2%

-O3 -march=native -fopenmp -mprefer-avx128 -funroll-loops
1       68.8%
2       73.9%
4       69.0%
8       66.8%

由于测量的不确定性,经过几次运行迭代,我得出以下结论:

  • 单线程标量操作获得超过50%的带宽。
  • 两个线程标量操作获得最高带宽。
  • 单线程向量操作比单线程标量操作更快。
  • 单线程SSE操作比单线程AVX操作更快。
  • 展开没有帮助。
  • 展开单线程操作比没有展开时慢。
  • 线程多于核心(超线程),带宽更低。

提供最佳带宽的解决方案是具有两个线程的标量操作。

我用来测试的代码:

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <omp.h>

#define N 10000000
#define R 100

void mul(double *a, double *b) {
  #pragma omp parallel for
  for (int i = 0; i<N; i++) a[i] *= b[i];
}

int main() {
  double maxbw = 2.4*2*8; // 2.4GHz * 2-channels * 64-bits * 1-byte/8-bits 
  double mem = 3*sizeof(double)*N*R*1E-9; // GB

  double *a = (double*)malloc(sizeof *a * N);
  double *b = (double*)malloc(sizeof *b * N);

  //due to copy-on-write b must be initialized to get the correct bandwidth
  //also, GCC will convert malloc + memset(0) to calloc so use memset(1)
  memset(b, 1, sizeof *b * N);

  double dtime = -omp_get_wtime();
  for(int i=0; i<R; i++) mul(a,b);
  dtime += omp_get_wtime();
  printf("%.2f s, %.1f GB/s, %.1f%%\n", dtime, mem/dtime, 100*mem/dtime/maxbw);

  free(a), free(b);
}

具有时间错误的旧解决方案

内联汇编的现代解决方案是使用内在函数。 仍然存在需要内联汇编的情况,但这不是其中之一。

内联汇编方法的一个内在解决方案很简单:

void mul_SSE(double*  a, double*  b) {
  for (int i = 0; i<N/2; i++) 
      _mm_store_pd(&a[2*i], _mm_mul_pd(_mm_load_pd(&a[2*i]),_mm_load_pd(&b[2*i])));
}

我来定义一些测试代码

#include <x86intrin.h>
#include <string.h>
#include <stdio.h>
#include <x86intrin.h>
#include <omp.h>

#define N 1000000
#define R 1000

typedef __attribute__(( aligned(32)))  double aligned_double;
void  (*fp)(aligned_double *a, aligned_double *b);

void mul(aligned_double* __restrict a, aligned_double* __restrict b) {
  for (int i = 0; i<N; i++) a[i] *= b[i];
}

void mul_SSE(double*  a, double*  b) {
  for (int i = 0; i<N/2; i++) _mm_store_pd(&a[2*i], _mm_mul_pd(_mm_load_pd(&a[2*i]),_mm_load_pd(&b[2*i])));
}

void mul_SSE_NT(double*  a, double*  b) {
  for (int i = 0; i<N/2; i++) _mm_stream_pd(&a[2*i], _mm_mul_pd(_mm_load_pd(&a[2*i]),_mm_load_pd(&b[2*i])));
}

void mul_SSE_OMP(double*  a, double*  b) {
  #pragma omp parallel for
  for (int i = 0; i<N; i++) a[i] *= b[i];
}

void test(aligned_double *a, aligned_double *b, const char *name) {
  double dtime;
  const double mem = 3*sizeof(double)*N*R/1024/1024/1024;
  const double maxbw = 34.1;
  dtime = -omp_get_wtime();
  for(int i=0; i<R; i++) fp(a,b);
  dtime += omp_get_wtime();
  printf("%s \t time %.2f s, %.1f GB/s, efficency %.1f%%\n", name, dtime, mem/dtime, 100*mem/dtime/maxbw);
}

int main() {
  double *a = (double*)_mm_malloc(sizeof *a * N, 32);
  double *b = (double*)_mm_malloc(sizeof *b * N, 32);

  //b must be initialized to get the correct bandwidth!!!
  memset(a, 1, sizeof *a * N);
  memset(b, 1, sizeof *a * N);

  fp = mul,         test(a,b, "mul        ");
  fp = mul_SSE,     test(a,b, "mul_SSE    ");
  fp = mul_SSE_NT,  test(a,b, "mul_SSE_NT ");
  fp = mul_SSE_OMP, test(a,b, "mul_SSE_OMP");

  _mm_free(a), _mm_free(b);
}

现在是第一次测试

g++ -O2 -fopenmp test.cpp
./a.out
mul              time 1.67 s, 13.1 GB/s, efficiency 38.5%
mul_SSE          time 1.00 s, 21.9 GB/s, efficiency 64.3%
mul_SSE_NT       time 1.05 s, 20.9 GB/s, efficiency 61.4%
mul_SSE_OMP      time 0.74 s, 29.7 GB/s, efficiency 87.0%

因此,对于没有矢量化循环的-O2 ,我们看到内在SSE版本比普通C解决方案mul快得多。 efficiency = bandwith_measured/max_bandwidth其中我的系统的最大值为34.1 GB / s。

第二次测试

g++ -O3 -fopenmp test.cpp
./a.out
mul              time 1.05 s, 20.9 GB/s, efficiency 61.2%
mul_SSE          time 0.99 s, 22.3 GB/s, efficiency 65.3%
mul_SSE_NT       time 1.01 s, 21.7 GB/s, efficiency 63.7%
mul_SSE_OMP      time 0.68 s, 32.5 GB/s, efficiency 95.2%

使用-O3矢量化循环,内在函数基本上没有优势。

第三次测试

g++ -O3 -fopenmp -funroll-loops test.cpp
./a.out
mul              time 0.85 s, 25.9 GB/s, efficency 76.1%
mul_SSE          time 0.84 s, 26.2 GB/s, efficency 76.7%
mul_SSE_NT       time 1.06 s, 20.8 GB/s, efficency 61.0%
mul_SSE_OMP      time 0.76 s, 29.0 GB/s, efficency 85.0%

使用-funroll-loops GCC将循环展开八次,除了非临时存储解决方案外,我们看到了一个显着的改进,而不是OpenMP解决方案的真正优势。

在展开循环之前, mul wiht -O3的组件是

    xor     eax, eax
.L2:
    movupd  xmm0, XMMWORD PTR [rsi+rax]
    mulpd   xmm0, XMMWORD PTR [rdi+rax]
    movaps  XMMWORD PTR [rdi+rax], xmm0
    add     rax, 16
    cmp     rax, 8000000
    jne     .L2
    rep ret

使用-O3 -funroll-loopsmul的程序集是:

   xor     eax, eax
.L2:
    movupd  xmm0, XMMWORD PTR [rsi+rax]
    movupd  xmm1, XMMWORD PTR [rsi+16+rax]
    mulpd   xmm0, XMMWORD PTR [rdi+rax]
    movupd  xmm2, XMMWORD PTR [rsi+32+rax]
    mulpd   xmm1, XMMWORD PTR [rdi+16+rax]
    movupd  xmm3, XMMWORD PTR [rsi+48+rax]
    mulpd   xmm2, XMMWORD PTR [rdi+32+rax]
    movupd  xmm4, XMMWORD PTR [rsi+64+rax]
    mulpd   xmm3, XMMWORD PTR [rdi+48+rax]
    movupd  xmm5, XMMWORD PTR [rsi+80+rax]
    mulpd   xmm4, XMMWORD PTR [rdi+64+rax]
    movupd  xmm6, XMMWORD PTR [rsi+96+rax]
    mulpd   xmm5, XMMWORD PTR [rdi+80+rax]
    movupd  xmm7, XMMWORD PTR [rsi+112+rax]
    mulpd   xmm6, XMMWORD PTR [rdi+96+rax]
    movaps  XMMWORD PTR [rdi+rax], xmm0
    mulpd   xmm7, XMMWORD PTR [rdi+112+rax]
    movaps  XMMWORD PTR [rdi+16+rax], xmm1
    movaps  XMMWORD PTR [rdi+32+rax], xmm2
    movaps  XMMWORD PTR [rdi+48+rax], xmm3
    movaps  XMMWORD PTR [rdi+64+rax], xmm4
    movaps  XMMWORD PTR [rdi+80+rax], xmm5
    movaps  XMMWORD PTR [rdi+96+rax], xmm6
    movaps  XMMWORD PTR [rdi+112+rax], xmm7
    sub     rax, -128
    cmp     rax, 8000000
    jne     .L2
    rep ret

第四次测试

g++ -O3 -fopenmp -mavx test.cpp
./a.out
mul              time 0.87 s, 25.3 GB/s, efficiency 74.3%
mul_SSE          time 0.88 s, 24.9 GB/s, efficiency 73.0%
mul_SSE_NT       time 1.07 s, 20.6 GB/s, efficiency 60.5%
mul_SSE_OMP      time 0.76 s, 29.0 GB/s, efficiency 85.2%

现在非内在函数是最快的(不包括OpenMP版本)。

因此在这种情况下没有理由使用内在函数或内联汇编,因为我们可以使用适当的编译器选项(例如-O3-funroll-loops-mavx )获得最佳性能。

测试系统:Ubuntu 16.10,Skylake(i7-6700HQ@2.60GHz),32GB RAM。 最大内存带宽(34.1 GB / s) https://ark.intel.com/products/88967/Intel-Core-i7-6700HQ-Processor-6M-Cache-up-to-3_50-GHz


这是另一个值得考虑的解决方案 如果我们从-N计数到零并且将数组作为N+i访问, 则不需要cmp指令 海湾合作委员会应该在很久以前修复过这个问题。 它消除了一条指令(尽管由于宏操作融合,cmp和jmp通常算作一个微操作)。

void mul_SSE_v2(double*  a, double*  b) {
  for (ptrdiff_t i = -N; i<0; i+=2)
    _mm_store_pd(&a[N + i], _mm_mul_pd(_mm_load_pd(&a[N + i]),_mm_load_pd(&b[N + i])));

使用-O3装配

mul_SSE_v2(double*, double*):
    mov     rax, -1000000
.L9:
    movapd  xmm0, XMMWORD PTR [rdi+8000000+rax*8]
    mulpd   xmm0, XMMWORD PTR [rsi+8000000+rax*8]
    movaps  XMMWORD PTR [rdi+8000000+rax*8], xmm0
    add     rax, 2
    jne     .L9
    rep ret
}

这种优化仅可能有助于阵列适合例如L1高速缓存,即不从主存储器读取。


我终于找到了一种方法来获得普通的C解决方案,而不是生成cmp指令。

void mul_v2(aligned_double* __restrict a, aligned_double* __restrict b) {
  for (int i = -N; i<0; i++) a[i] *= b[i];
}

然后从一个单独的目标文件中调用该函数,如mul_v2(&a[N],&b[N]) ,这可能是最好的解决方案。 但是,如果从与GCC中定义的目标文件(转换单元)相同的目标文件(转换单元)调用该函数,则会再次生成cmp指令。

也,

void mul_v3(aligned_double* __restrict a, aligned_double* __restrict b) {
  for (int i = -N; i<0; i++) a[N+i] *= b[N+i];
}

仍然生成cmp指令并生成与mul函数相同的程序集。


函数mul_SSE_NT很傻。 它使用非时间存储,仅在写入存储器时才有用,但由于函数读取和写入相同的地址,非临时存储不仅无用,而且会产生较差的结果。


此答案的先前版本获得了错误的带宽。 原因是阵列没有初始化。

我想为问题添加另一种观点。 如果没有内存限制,SIMD指令可以大大提升性能。 但是在当前示例中存在太多的内存加载和存储操作以及太少的CPU计算。 因此CPU及时处理传入数据而不使用SIMD。 如果您使用其他类型的数据(例如32位浮点数)或更复杂的算法,则内存吞吐量不会限制CPU性能,使用SIMD将带来更多优势。

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM