繁体   English   中英

Haskell中广泛模式匹配的清洁替代方案

[英]Cleaner Alternative to Extensive Pattern Matching in Haskell

现在,我有一些基本上像这样的代码:

data Expression 
    = Literal Bool 
    | Variable String
    | Not Expression 
    | Or Expression Expression 
    | And Expression Expression
    deriving Eq

simplify :: Expression -> Expression
simplify (Literal b) = Literal b
simplify (Variable s) = Variable s
simplify (Not e) = case simplify e of
    (Literal b) -> Literal (not b)
    e'          -> Not e'
simplify (And a b) = case (simplify a, simplify b) of
    (Literal False, _) -> Literal False
    (_, Literal False) -> Literal False
    (a', b')           -> And a' b'
simplify (Or a b) = case (simplify a, simplify b) of
    (Literal True, _) -> Literal True
    (_, Literal True) -> Literal True
    (a', b')          -> Or a' b'

还有更多关于可以简化布尔表达式的所有方式的模式。 然而,随着我添加更多运营商和规则,这种情况越来越大,感觉很笨拙。 特别是因为一些规则需要加两次来解释交换性。

我怎样才能很好地重构许多模式,其中一些(大多数,我会说)甚至是对称的(例如,采用And和Or模式)?

现在,添加一个规则来简化And (Variable "x") (Not (Variable "x"))Literal False需要我添加两个嵌套规则,这几乎是最优的。

基本上问题是你必须一遍又一遍地写出每个子句中子表达式的simplify 在考虑涉及顶级运营商的法律之前,首先完成所有子表达式会更好。 一种简单的方法是添加一个simplify的辅助版本,它不会递归:

simplify :: Expression -> Expression
simplify (Literal b) = Literal b
simplify (Variable s) = Variable s
simplify (Not e) = simplify' . Not $ simplify e
simplify (And a b) = simplify' $ And (simplify a) (simplify b)
simplify (Or a b) = simplify' $ Or (simplify a) (simplify b)

simplify' :: Expression -> Expression
simplify' (Not (Literal b)) = Literal $ not b
simplify' (And (Literal False) _) = Literal False
...

由于您在布尔运算中只进行了少量操作,这可能是最明智的方法。 但是,通过更多操作, simplify的重复可能仍然值得避免。 为此,您可以将一元和二元操作混合到一个公共构造函数:

data Expression 
    = Literal Bool 
    | Variable String
    | BoolPrefix BoolPrefix Expression 
    | BoolInfix BoolInfix Expression Expression 
    deriving Eq

data BoolPrefix = Negation
data BoolInfix  = AndOp | OrOp

然后你就是

simplify (Literal b) = Literal b
simplify (Variable s) = Variable s
simplify (BoolPrefix bpf e) = simplify' . BoolPrefix bpf $ simplify e
simplify (BoolInfix bifx a b) = simplify' $ BoolInfix bifx (simplify a) (simplify b)

显然这会使simplify'更加尴尬,所以也许不是一个好主意。 但是,您可以通过定义专门的模式同义词来解决这种语法开销:

{-# LANGUAGE PatternSynonyms #-}

pattern Not :: Expression -> Expression
pattern Not x = BoolPrefix Negation x

infixr 3 :∧
pattern (:∧) :: Expression -> Expression -> Expression
pattern a:∧b = BoolInfix AndOp a b

infixr 2 :∨
pattern (:∨) :: Expression -> Expression -> Expression
pattern a:∨b = BoolInfix OrOp a b

就此而言,也许也是如此

pattern F, T :: Expression
pattern F = Literal False
pattern T = Literal True

有了它,你就可以写了

simplify' :: Expression -> Expression
simplify' (Not (Literal b)) = Literal $ not b
simplify' (F :∧ _) = F
simplify' (_ :∧ F) = F
simplify' (T :∨ _) = T
simplify' (a :∧ Not b) | a==b  = T
...

我应该添加一个警告: 当我尝试类似于那些模式同义词的东西,而不是布尔值但是仿射映射时,它使编译器非常慢 (此外,GHC-7.10尚未支持多态模式同义词;截至目前,这已经发生了很大变化。)


还要注意,所有这些通常不会产生最简单的形式 - 为此,您需要找到simplify的固定点。

你可以做的一件事是在你构造时简化,而不是先构建然后重复破坏。 所以:

module Simple (Expression, true, false, var, not, or, and) where

import Prelude hiding (not, or, and)

data Expression
    = Literal Bool
    | Variable String
    | Not Expression
    | Or Expression Expression
    | And Expression Expression
    deriving (Eq, Ord, Read, Show)

true = Literal True
false = Literal False
var = Variable

not (Literal True) = false
not (Literal False) = true
not x = Not x

or (Literal True) _ = true
or _ (Literal True) = true
or x y = Or x y

and (Literal False) _ = false
and _ (Literal False) = false
and x y = And x y

我们可以在ghci中尝试一下:

> and (var "x") (and (var "y") false)
Literal False

请注意,构造函数不会导出:这可以确保构造其中一个的人无法避免简化过程。 实际上,这可能是一个缺点; 偶尔看到“完整”形式很高兴。 处理此问题的标准方法是使导出的智能构造函数成为类类的一部分; 您可以使用它们来构建“完整”表单或“简化”表单。 为了避免必须两次定义类型,我们可以使用newtype或phantom参数; 我会选择后者来减少模式匹配中的噪音。

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE KindSignatures #-}
module Simple (Format(..), true, false, var, not, or, and) where

import Prelude hiding (not, or, and)

data Format = Explicit | Simplified

data Expression (a :: Format)
    = Literal Bool
    | Variable String
    | Not (Expression a)
    | Or (Expression a) (Expression a)
    | And (Expression a) (Expression a)
    deriving (Eq, Ord, Read, Show)

class Expr e where
    true, false :: e
    var :: String -> e
    not :: e -> e
    or, and :: e -> e -> e

instance Expr (Expression Explicit) where
    true = Literal True
    false = Literal False
    var = Variable
    not = Not
    or = Or
    and = And

instance Expr (Expression Simplified) where
    true = Literal True
    false = Literal False
    var = Variable

    not (Literal True) = false
    not (Literal False) = true
    not x = Not x

    or (Literal True) _ = true
    or _ (Literal True) = true
    or x y = Or x y

    and (Literal False) _ = false
    and _ (Literal False) = false
    and x y = And x y

现在在ghci中,我们可以通过两种不同的方式“运行”相同的术语:

> :set -XDataKinds
> and (var "x") (and (var "y") false) :: Expression Explicit
And (Variable "x") (And (Variable "y") (Literal False))
> and (var "x") (and (var "y") false) :: Expression Simplified
Literal False

您可能希望稍后添加更多规则; 例如,也许你想要:

and (Variable x) (Not (Variable y)) | x == y = false
and (Not (Variable x)) (Variable y) | x == y = false

不得不重复两种模式的“顺序”有点烦人。 我们应该抽象一下! 数据声明和类将是相同的,但我们会添加辅助功能eitherOrder中的定义,并用它andor 这是使用这个想法(以及我们最终版本的模块)的更完整的简化集:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE KindSignatures #-}
module Simple (Format(..), true, false, var, not, or, and) where

import Data.Maybe
import Data.Monoid
import Prelude hiding (not, or, and)
import Control.Applicative ((<|>))

data Format = Explicit | Simplified

data Expression (a :: Format)
    = Literal Bool
    | Variable String
    | Not (Expression a)
    | Or (Expression a) (Expression a)
    | And (Expression a) (Expression a)
    deriving (Eq, Ord, Read, Show)

class Expr e where
    true, false :: e
    var :: String -> e
    not :: e -> e
    or, and :: e -> e -> e

instance Expr (Expression Explicit) where
    true = Literal True
    false = Literal False
    var = Variable
    not = Not
    or = Or
    and = And

eitherOrder :: (e -> e -> e)
            -> (e -> e -> Maybe e)
            -> e -> e -> e
eitherOrder fExplicit fSimplified x y = fromMaybe
    (fExplicit x y)
    (fSimplified x y <|> fSimplified y x)

instance Expr (Expression Simplified) where
    true = Literal True
    false = Literal False
    var = Variable

    not (Literal True) = false
    not (Literal False) = true
    not (Not x) = x
    not x = Not x

    or = eitherOrder Or go where
        go (Literal True) _ = Just true
        go (Literal False) x = Just x
        go (Variable x) (Variable y) | x == y = Just (var x)
        go (Variable x) (Not (Variable y)) | x == y = Just true
        go _ _ = Nothing

    and = eitherOrder And go where
        go (Literal True) x = Just x
        go (Literal False) _ = Just false
        go (Variable x) (Variable y) | x == y = Just (var x)
        go (Variable x) (Not (Variable y)) | x == y = Just false
        go _ _ = Nothing

现在在ghci中我们可以做更复杂的简化,例如:

> and (not (not (var "x"))) (var "x") :: Expression Simplified
Variable "x"

即使我们只写了一个重写规则的顺序,两个命令都正常工作:

> and (not (var "x")) (var "x") :: Expression Simplified
Literal False
> and (var "x") (not (var "x")) :: Expression Simplified
Literal False

我认为爱因斯坦说:“尽可能地简化,但不能再简化。” 你有一个复杂的数据类型和相应复杂的概念,所以我认为任何技术只能对手头的问题更加清晰。

也就是说,第一种选择是使用案例结构。

simplify x = case x of
   Literal _  -> x
   Variable _ -> x
   Not e      -> simplifyNot $ simplify e
   ...
   where
     sharedFunc1 = ...
     sharedFunc2 = ...

这具有包括共享功能的额外好处,所述共享功能可用于所有情况但不能用于顶级命名空间。 我也喜欢这些案例如何从括号中解脱出来。 (另请注意,在前两种情况下,我只返回原始术语,而不是创建新术语)。 我经常使用这种结构来打破其他简化函数,就像Not的情况一样。

特别是这个问题可能有助于将Expression放在底层fmap函数上,这样您就可以简化子表达式,然后执行给定大小写的特定组合。 它看起来如下所示:

simplify :: Expression' -> Expression'
simplify = Exp . reduce . fmap simplify . unExp

这里的步骤是将Expression'展开到底层的functor表示中,映射底层术语的简化,然后减少这种简化并重新包装到新的Expression'

{-# Language DeriveFunctor #-}

newtype Expression' = Exp { unExp :: ExpressionF Expression' }

data ExpressionF e
  = Literal Bool 
  | Variable String
  | Not e 
  | Or e e
  | And e e
  deriving (Eq,Functor)

现在,我已经将复杂性推到了reduce函数中,它只是稍微复杂一点,因为它不必担心首先减少子项。 但它现在只包含将一个术语与另一个术语合并的业务逻辑。

这可能是也可能不是一种很好的技术,但它可以使一些增强更容易。 例如,如果可以用您的语言形成无效表达式,则可以使用Maybe值失败来简化该表达式。

simplifyMb :: Expression' -> Maybe Expression'
simplifyMb = fmap Exp . reduceMb <=< traverse simplifyMb . unExp

这里, traversesimplfyMb应用于ExpressionF ,导致Maybe子类的表达式, ExpressionF (Maybe Expression') ,然后如果任何子类是Nothing ,它将返回Nothing ,如果所有都是Just x ,它将返回Just (e::ExpressionF Expression') Traverse实际上并没有像这样分成不同的阶段,但它更容易解释,就好像它一样。 另请注意,您需要DeriveTraversable和DeriveFoldable的语言编译指示,以及ExpressionF数据类型的派生语句。

不足之处? 好吧,对于其中一个,你的代码的污垢将随处可见一堆Exp包装器。 考虑以下简单术语的simplfyMb的应用:

simplifyMb (Exp $ Not (Exp $ Literal True))

如果您了解上面的traversefmap模式,您可以在很多地方重复使用它,这样做很好。 我也相信以这种方式定义简化使得它对于特定的ExpressionF结构可能变得更加健壮。 它没有提到它们,所以深度简化不会受到重构的影响。 另一方面,reduce函数将是。

继续使用Binary Op Expression Expression想法,我们可以得到以下数据类型:

data Expression
    = Literal Bool
    | Variable String
    | Not Expression
    | Binary Op Expression Expression
    deriving Eq

data Op = Or | And deriving Eq

并辅助功能

{-# LANGUAGE ViewPatterns #-}

simplifyBinary  :: Op -> Expression -> Expression -> Expression
simplifyBinary  binop (simplify -> leftexp) (simplify -> rightexp) =
    case oneway binop leftexp rightexp ++ oneway binop rightexp leftexp of
        simplified : _ -> simplified
        []             -> Binary binop leftexp rightexp
  where
    oneway :: Op -> Expression -> Expression -> [Expression]
    oneway And (Literal False) _ = [Literal False]
    oneway Or  (Literal True)  _ = [Literal True]
    -- more cases here
    oneway _   _               _ = []

这个想法是,你干脆把简化案件oneway然后simplifyBinary将采取扭转参数的照顾,以避免写对称的情况。

您可以为所有二进制操作编写通用的简化器:

simplifyBinWith :: (Bool -> Bool -> Bool) -- the boolean operation
                -> (Expression -> Expression -> Expression) -- the constructor
                -> Expression -> Expression -- the two operands
                -> Expression) -- the simplified result
simplifyBinWith op cons a b = case (simplify a, simplify b) of
    (Literal x, Literal y) -> Literal (op x y)
    (Literal x, b')        -> tryAll (x `op`) b'
    (a',        Literal y) -> tryAll (`op` y) a'
    (a',        b')        -> cons a' b'
  where
    tryAll f term = case (f True, f False) of -- what would f do if term was true of false
      (True,  True)  -> Literal True
      (True,  False) -> term
      (False, True)  -> Not term
      (False, False) -> Literal False

这样,你的simplify功能就会变成

simplify :: Expression -> Expression
simplify (Not e)   = case simplify e of
    (Literal b) -> Literal (not b)
    e'          -> Not e'
simplify (And a b) = simplifyBinWith (&&) And a b
simplify (Or a b)  = simplifyBinWith (||) Or a b
simplify t         = t

并且可以很容易地扩展到更多的二进制操作。 它也将与正常工作Binary Op Expression Expression的想法,你会经过Op ,而不是Expression构造函数simplifyBinWith和模式simplify可以推广:

simplify :: Expression -> Expression
simplify (Not e)         = case simplify e of
    (Literal b) -> Literal (not b)
    e'          -> Not e'
simplify (Binary op a b) = simplifyBinWith (case op of
    And -> (&&)
    Or -> (||)
    Xor -> (/=)
    Implies -> (<=)
    Equals -> (==)
    …
  ) op a b
simplify t               = t
  where
    simplifyBinWith f op a b = case (simplify a, simplify b) of
      (Literal x, Literal y) -> Literal (f x y)
      …
      (a',        b')        -> Binary op a' b'

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM