繁体   English   中英

浏览器中的mp3流解码

[英]mp3 stream decoding in browser

我正在尝试使用emscripten和libmad在浏览器中设置mp3流接收器。
我设法用低级api解码mp3文件,并将其完全加载到内存中。 我的下一步是将其分块加载。
给定的示例中,我模拟了分配了随机大小(从20到40 KB)的缓冲区的碎片包,然后将文件部分复制到这些缓冲区中。

我的解码算法与此问题中的答案相关,但是有点不同。 主要对象是Decoder,它通过addFragment方法接收片段。 解码器具有待处理的片段和粘合缓冲区。 当用户添加第一个片段时,其尾部将被复制到胶水缓冲区的前半部分。 当添加第二个片段时,它开始被复制到胶水的后半部分。 当解码器到达活动缓冲区末端时,它将切换为粘连,反之,当粘连结束时,则相反。 我确保所有这些缓冲区部分都是一致的,并且mad_stream指向切换之前指向的相同逻辑字节。

来自decoder.cpp的重要片段

void Decoder::addFragment          //adds the fragment to decoding queue
(intptr_t bufferPtr, uint32_t length)
{
    if (length < GLUE_LENGTH / 2) {
        return;
    }
    uint8_t* buffer = (uint8_t(*))bufferPtr;
    RawBuffer rb = {buffer, length};
    pending.push_back(rb);

    switch (state) {
        case empty:
            mad_stream_buffer(&stream, buffer, length);

            for (int i = 0; i < GLUE_LENGTH/2; ++i) {
                glue[i] = buffer[length - GLUE_LENGTH/2 + i];
            }

            state = onBufferHalf;
            prepareNextBuffer();
            break;
        case onBufferHalf:
            for (int i = 0; i < GLUE_LENGTH/2; ++i) {
                glue[GLUE_LENGTH/2 + i] = buffer[i];
            }

            state = onBufferFull;
            break;
        case onGlueHalf:
            for (int i = 0; i < GLUE_LENGTH/2; ++i) {
                glue[GLUE_LENGTH/2 + i] = buffer[i];
            }

            state = onGlueFull;
            cached = false;
            prepareNextBuffer();
            break;
        default:
            break;
    }
}

emscripten::val Decoder::decode     //decodes up to requested amount of frames
(uint32_t count)
{
    emscripten::val ret = emscripten::val::undefined();

    int available = framesLeft(count);
    if (available > 0) {
        ret = context.call<emscripten::val>("createBuffer", channels, available * samplesPerFrame, sampleRate);

        std::vector<emscripten::val> chans(channels, emscripten::val::undefined());
        for (int i = 0; i < channels; ++i) {
            chans[i] = ret.call<emscripten::val>("getChannelData", i);
        } 

        for (int i = 0; i < available; ++i) {
            int res = mad_frame_decode(&frame, &stream);

            if (res != 0) {
                if (MAD_RECOVERABLE(stream.error)) {
                    continue;
                } else {
                    break;
                }
            }

            mad_synth_frame(&synth, &frame);
            for (int j = 0; j < samplesPerFrame; ++j) {
                for (int k = 0; k < channels; ++k) {
                    float value = mad_f_todouble(synth.pcm.samples[k][j]);
                    chans[k].set(std::to_string(success * samplesPerFrame + j), emscripten::val(value));
                }
            }
        }

        cachedLength -= available;
        if (cachedLength == 0) {
            cached = false;
            prepareNextBuffer();
        }
    }
    return ret;
}


//tells how many frames can be decoded on the same
//sample rate, same amount of channels without switching the buffers
//it is required in Decoder::decode method to understand the size of 
//allocating AudioContext::AudioBuffer.

uint32_t Decoder::framesLeft(uint32_t max)
{
    if (state == empty || state == onGlueHalf) {
        return 0;
    }

    if (cached == false) {
        mad_stream probe;
        mad_header ph;
        initializeProbe(probe);
        mad_header_init(&ph);

        while (cachedLength < max) {
            if (mad_header_decode(&ph, &probe) == 0) {
                if (sampleRate == 0) {
                    sampleRate = ph.samplerate;
                    channels = MAD_NCHANNELS(&ph);
                    samplesPerFrame = MAD_NSBSAMPLES(&ph) * 32;
                } else {
                    if (sampleRate != ph.samplerate || channels != MAD_NCHANNELS(&ph) || samplesPerFrame != MAD_NSBSAMPLES(&ph) * 32) {
                        break;
                    }
                }
                if (probe.next_frame > probe.this_frame) {
                    ++cachedLength;
                }
            } else {
                if (!MAD_RECOVERABLE(probe.error)) {
                    break;
                }
            }
        }

        cachedNext = probe.next_frame;
        cachedThis = probe.this_frame;
        cachedError = probe.error;
        mad_header_finish(&ph);
        mad_stream_finish(&probe);
        cached = true;
    }

    return std::min(cachedLength, max);
}

//this method fastforwards the stream
//to the cached end
void Decoder::pullBuffer()
{
    if (cached == false) {
        throw 2;
    }
    stream.this_frame = cachedThis;
    stream.next_frame = cachedNext;
    stream.error = cachedError;
}

//this method switches the stream to glue buffer
//or to the next pending buffer
//copies the parts to the glue buffer if required

void Decoder::changeBuffer()
{
    uint32_t left;
    switch (state) {
        case empty:
            throw 3;
        case onBufferHalf:
            switchToGlue();
            state = onGlueHalf;
            break;
        case onBufferFull:
            switchToGlue();
            state = onGlueFull;
            break;
        case onGlueHalf:
            throw 4;
            break;
        case onGlueFull:
            switchBuffer(pending[0].ptr, pending[0].length);

            for (int i = 0; i < GLUE_LENGTH/2; ++i) {
                glue[i] = pending[0].ptr[pending[0].length - GLUE_LENGTH/2 + i];
            }
            state = onBufferHalf;

            if (pending.size() > 1) {
                for (int i = 0; i < GLUE_LENGTH/2; ++i) {
                    glue[GLUE_LENGTH/2 + i] = pending[1].ptr[i];
                }
                state = onBufferFull;
            }
    }

    cached = false;
}

//this method seeks the decodable data in pending buffers
//prepares if any proper data has been found
void Decoder::prepareNextBuffer()
{
    bool shift;
    do {
        shift = false;
        framesLeft();
        if (cachedLength == 0 && state != empty && state != onGlueHalf) {
            pullBuffer();
            changeBuffer();
            shift = true;
        }
    } while (shift);
}

//low level method to switch to glue buffer, also frees the drained fragment
void Decoder::switchToGlue()
{
    switchBuffer(glue, GLUE_LENGTH);
    stream.error = MAD_ERROR_NONE;

    free(pending[0].ptr);
    pending.pop_front();
}

//low level method which actually switch mad_stream
//to another buffer
void Decoder::switchBuffer(uint8_t* bufferPtr, uint32_t length)
{
    uint32_t left;
    left = stream.bufend - stream.next_frame;
    mad_stream_buffer(&stream, bufferPtr + GLUE_LENGTH / 2 - left, length - (GLUE_LENGTH / 2 - left));
    stream.error = MAD_ERROR_NONE;
}

是我的完整代码仓库。 要尝试使用它,您需要使用CMake进行构建(应该安装了脚本),然后从浏览器的build目录中打开index.html。

问题
播放失真。 我尝试检查移位前后所有上次成功帧周围的字节,mad_stream的所有不同子结构-一切似乎都能正常工作,但仍然无法正常工作。 我的最新进展在此处构建和托管。 我真的很困,我不知道该怎么做才能消除播放中的失真。

如果有人帮助我,我将不胜感激。

这里有多个不同的答案,但是一种解决方案是通过socket.io 这是某人为客户端设置流二进制文件的示例 这样可以避免在服务器上进行分段,而委托客户端为您完成分段。

这里缺少的部分是通过mp3解码器运行二进制文件。 一些库可以自动确定格式,但是您可能还必须传递编码类型,以便它知道如何解析二进制流。 可能已经在Aurora中提供了,但是我不熟悉它。

我找到了! MAD完美运行,只是因为我的内部计数器,我一直跳过输出中的第一个解码帧。

for (int i = 0; success < available; ++i) {
            int res = mad_frame_decode(frame, stream);

            if (res == 0) {
                ++**success**;
            } else {
                if (MAD_RECOVERABLE(stream->error)) {

                    std::cout << "Unexpected error during the decoding process: " << mad_stream_errorstr(stream) << std::endl;
                    continue;
                } else {
                    break;
                }
            }

            mad_synth_frame(synth, frame);

            for (int j = 0; j < samplesPerFrame; ++j) {
                for (int k = 0; k < channels; ++k) {
                    float value = mad_f_todouble(synth->pcm.samples[k][j]);
                    chans[k].set(std::to_string(success * samplesPerFrame + j), emscripten::val(value));
                }
            }
        }

改变了我的 成功 ,并且成功了。

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM