繁体   English   中英

为什么将 0.1f 更改为 0 会使性能降低 10 倍?

[英]Why does changing 0.1f to 0 slow down performance by 10x?

为什么这段代码,

const float x[16] = {  1.1,   1.2,   1.3,     1.4,   1.5,   1.6,   1.7,   1.8,
                       1.9,   2.0,   2.1,     2.2,   2.3,   2.4,   2.5,   2.6};
const float z[16] = {1.123, 1.234, 1.345, 156.467, 1.578, 1.689, 1.790, 1.812,
                     1.923, 2.034, 2.145,   2.256, 2.367, 2.478, 2.589, 2.690};
float y[16];
for (int i = 0; i < 16; i++)
{
    y[i] = x[i];
}

for (int j = 0; j < 9000000; j++)
{
    for (int i = 0; i < 16; i++)
    {
        y[i] *= x[i];
        y[i] /= z[i];
        y[i] = y[i] + 0.1f; // <--
        y[i] = y[i] - 0.1f; // <--
    }
}

运行速度比以下位快 10 倍以上(除另有说明外相同)?

const float x[16] = {  1.1,   1.2,   1.3,     1.4,   1.5,   1.6,   1.7,   1.8,
                       1.9,   2.0,   2.1,     2.2,   2.3,   2.4,   2.5,   2.6};
const float z[16] = {1.123, 1.234, 1.345, 156.467, 1.578, 1.689, 1.790, 1.812,
                     1.923, 2.034, 2.145,   2.256, 2.367, 2.478, 2.589, 2.690};
float y[16];
for (int i = 0; i < 16; i++)
{
    y[i] = x[i];
}

for (int j = 0; j < 9000000; j++)
{
    for (int i = 0; i < 16; i++)
    {
        y[i] *= x[i];
        y[i] /= z[i];
        y[i] = y[i] + 0; // <--
        y[i] = y[i] - 0; // <--
    }
}

使用 Visual Studio 2010 SP1 编译时。 启用sse2的优化级别为-02 我没有用其他编译器测试过。

欢迎来到非规范化浮点的世界! 他们可以对性能造成严重破坏!!!

非正规(或次正规)数字是一种从浮点表示中获得一些非常接近零的额外值的技巧。 非规范化浮点运算可能比规范化浮点运算慢数十到数百倍 这是因为许多处理器无法直接处理它们,必须使用微码捕获和解析它们。

如果在 10,000 次迭代后打印出这些数字,您将看到它们已经收敛到不同的值,具体取决于使用的是0还是0.1

这是在 x64 上编译的测试代码:

int main() {

    double start = omp_get_wtime();

    const float x[16]={1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6};
    const float z[16]={1.123,1.234,1.345,156.467,1.578,1.689,1.790,1.812,1.923,2.034,2.145,2.256,2.367,2.478,2.589,2.690};
    float y[16];
    for(int i=0;i<16;i++)
    {
        y[i]=x[i];
    }
    for(int j=0;j<9000000;j++)
    {
        for(int i=0;i<16;i++)
        {
            y[i]*=x[i];
            y[i]/=z[i];
#ifdef FLOATING
            y[i]=y[i]+0.1f;
            y[i]=y[i]-0.1f;
#else
            y[i]=y[i]+0;
            y[i]=y[i]-0;
#endif

            if (j > 10000)
                cout << y[i] << "  ";
        }
        if (j > 10000)
            cout << endl;
    }

    double end = omp_get_wtime();
    cout << end - start << endl;

    system("pause");
    return 0;
}

输出:

#define FLOATING
1.78814e-007  1.3411e-007  1.04308e-007  0  7.45058e-008  6.70552e-008  6.70552e-008  5.58794e-007  3.05474e-007  2.16067e-007  1.71363e-007  1.49012e-007  1.2666e-007  1.11759e-007  1.04308e-007  1.04308e-007
1.78814e-007  1.3411e-007  1.04308e-007  0  7.45058e-008  6.70552e-008  6.70552e-008  5.58794e-007  3.05474e-007  2.16067e-007  1.71363e-007  1.49012e-007  1.2666e-007  1.11759e-007  1.04308e-007  1.04308e-007

//#define FLOATING
6.30584e-044  3.92364e-044  3.08286e-044  0  1.82169e-044  1.54143e-044  2.10195e-044  2.46842e-029  7.56701e-044  4.06377e-044  3.92364e-044  3.22299e-044  3.08286e-044  2.66247e-044  2.66247e-044  2.24208e-044
6.30584e-044  3.92364e-044  3.08286e-044  0  1.82169e-044  1.54143e-044  2.10195e-044  2.45208e-029  7.56701e-044  4.06377e-044  3.92364e-044  3.22299e-044  3.08286e-044  2.66247e-044  2.66247e-044  2.24208e-044

请注意,在第二次运行中,数字非常接近于零。

非规范化数字通常很少见,因此大多数处理器不会尝试有效地处理它们。


为了证明这与非规范化数字有关,如果我们通过将其添加到代码的开头将非规范化数刷新为零

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);

然后带有0的版本不再慢 10 倍,实际上变得更快。 (这要求在启用 SSE 的情况下编译代码。)

这意味着我们不是使用这些奇怪的低精度几乎为零的值,而是将其舍入为零。

时序:Core i7 920 @ 3.5 GHz:

//  Don't flush denormals to zero.
0.1f: 0.564067
0   : 26.7669

//  Flush denormals to zero.
0.1f: 0.587117
0   : 0.341406

最后,这真的与它是整数还是浮点数无关。 00.1f被转换/存储到两个循环之外的寄存器中。 所以这对性能没有影响。

使用gcc并对生成的程序集应用差异只会产生以下差异:

73c68,69
<   movss   LCPI1_0(%rip), %xmm1
---
>   movabsq $0, %rcx
>   cvtsi2ssq   %rcx, %xmm1
81d76
<   subss   %xmm1, %xmm0

cvtsi2ssq确实慢了 10 倍。

显然, float版本使用从内存加载的XMM寄存器,而int版本使用cvtsi2ssq指令将真正的int值 0 转换为float ,花费了大量时间。 -O3传递给 gcc 没有帮助。 (gcc 版本 4.2.1。)

(使用double而不是float无关紧要,只是它将cvtsi2ssq更改为cvtsi2sdq 。)

更新

一些额外的测试表明它不一定是cvtsi2ssq指令。 一旦消除(使用int ai=0;float a=ai;并使用a而不是0 ),速度差异仍然存在。 所以@Mysticial 是对的,非规范化的浮点数有所不同。 这可以通过测试00.1f之间的值来看出。 上述代码中的转折点大约在0.00000000000000000000000000000001 ,此时循环的时间突然增加了 10 倍。

更新<<1

这个有趣现象的一个小可视化:

  • 第 1 列:浮点数,每次迭代除以 2
  • 第 2 列:此浮点数的二进制表示
  • 第 3 列:将这个浮点数相加 1e7 次所花费的时间

当非规范化开始时,您可以清楚地看到指数(最后 9 位)变为最低值。此时,简单的加法会慢 20 倍。

0.000000000000000000000000000000000100000004670110: 10111100001101110010000011100000 45 ms
0.000000000000000000000000000000000050000002335055: 10111100001101110010000101100000 43 ms
0.000000000000000000000000000000000025000001167528: 10111100001101110010000001100000 43 ms
0.000000000000000000000000000000000012500000583764: 10111100001101110010000110100000 42 ms
0.000000000000000000000000000000000006250000291882: 10111100001101110010000010100000 48 ms
0.000000000000000000000000000000000003125000145941: 10111100001101110010000100100000 43 ms
0.000000000000000000000000000000000001562500072970: 10111100001101110010000000100000 42 ms
0.000000000000000000000000000000000000781250036485: 10111100001101110010000111000000 42 ms
0.000000000000000000000000000000000000390625018243: 10111100001101110010000011000000 42 ms
0.000000000000000000000000000000000000195312509121: 10111100001101110010000101000000 43 ms
0.000000000000000000000000000000000000097656254561: 10111100001101110010000001000000 42 ms
0.000000000000000000000000000000000000048828127280: 10111100001101110010000110000000 44 ms
0.000000000000000000000000000000000000024414063640: 10111100001101110010000010000000 42 ms
0.000000000000000000000000000000000000012207031820: 10111100001101110010000100000000 42 ms
0.000000000000000000000000000000000000006103515209: 01111000011011100100001000000000 789 ms
0.000000000000000000000000000000000000003051757605: 11110000110111001000010000000000 788 ms
0.000000000000000000000000000000000000001525879503: 00010001101110010000100000000000 788 ms
0.000000000000000000000000000000000000000762939751: 00100011011100100001000000000000 795 ms
0.000000000000000000000000000000000000000381469876: 01000110111001000010000000000000 896 ms
0.000000000000000000000000000000000000000190734938: 10001101110010000100000000000000 813 ms
0.000000000000000000000000000000000000000095366768: 00011011100100001000000000000000 798 ms
0.000000000000000000000000000000000000000047683384: 00110111001000010000000000000000 791 ms
0.000000000000000000000000000000000000000023841692: 01101110010000100000000000000000 802 ms
0.000000000000000000000000000000000000000011920846: 11011100100001000000000000000000 809 ms
0.000000000000000000000000000000000000000005961124: 01111001000010000000000000000000 795 ms
0.000000000000000000000000000000000000000002980562: 11110010000100000000000000000000 835 ms
0.000000000000000000000000000000000000000001490982: 00010100001000000000000000000000 864 ms
0.000000000000000000000000000000000000000000745491: 00101000010000000000000000000000 915 ms
0.000000000000000000000000000000000000000000372745: 01010000100000000000000000000000 918 ms
0.000000000000000000000000000000000000000000186373: 10100001000000000000000000000000 881 ms
0.000000000000000000000000000000000000000000092486: 01000010000000000000000000000000 857 ms
0.000000000000000000000000000000000000000000046243: 10000100000000000000000000000000 861 ms
0.000000000000000000000000000000000000000000022421: 00001000000000000000000000000000 855 ms
0.000000000000000000000000000000000000000000011210: 00010000000000000000000000000000 887 ms
0.000000000000000000000000000000000000000000005605: 00100000000000000000000000000000 799 ms
0.000000000000000000000000000000000000000000002803: 01000000000000000000000000000000 828 ms
0.000000000000000000000000000000000000000000001401: 10000000000000000000000000000000 815 ms
0.000000000000000000000000000000000000000000000000: 00000000000000000000000000000000 42 ms
0.000000000000000000000000000000000000000000000000: 00000000000000000000000000000000 42 ms
0.000000000000000000000000000000000000000000000000: 00000000000000000000000000000000 44 ms

关于 ARM 的等效讨论可以在 Stack Overflow 问题Denormalized floating point in Objective-C 中找到? .

这是由于非规范化的浮点使用。 如何摆脱它和性能损失? 在互联网上搜索了杀死非正规数的方法后,似乎还没有“最佳”方法可以做到这一点。 我发现这三种方法可能在不同的环境中效果最好:

  • 在某些 GCC 环境中可能不起作用:

     // Requires #include <fenv.h> fesetenv(FE_DFL_DISABLE_SSE_DENORMS_ENV);
  • 在某些 Visual Studio 环境中可能不起作用: 1

     // Requires #include <xmmintrin.h> _mm_setcsr( _mm_getcsr() | (1<<15) | (1<<6) ); // Does both FTZ and DAZ bits. You can also use just hex value 0x8040 to do both. // You might also want to use the underflow mask (1<<11)
  • 似乎在 GCC 和 Visual Studio 中都可以使用:

     // Requires #include <xmmintrin.h> // Requires #include <pmmintrin.h> _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
  • 默认情况下,英特尔编译器具有在现代英特尔 CPU 上禁用非规范化的选项。 更多细节在这里

  • 编译器开关。 -ffast-math-msse-mfpmath=sse将禁用非正规-mfpmath=sse并使其他一些事情更快,但不幸的是,也会执行许多其他可能破坏您的代码的近似值。 仔细测试! Visual Studio 编译器的 fast-math 的等效项是/fp:fast但我无法确认这是否也禁用了非规范化。 1

在 gcc 中,您可以通过以下方式启用 FTZ 和 DAZ:

#include <xmmintrin.h>

#define FTZ 1
#define DAZ 1   

void enableFtzDaz()
{
    int mxcsr = _mm_getcsr ();

    if (FTZ) {
            mxcsr |= (1<<15) | (1<<11);
    }

    if (DAZ) {
            mxcsr |= (1<<6);
    }

    _mm_setcsr (mxcsr);
}

也使用 gcc 开关:-msse -mfpmath=sse

(相应的学分来自 Carl Hetherington [1])

[1] http://carlh.net/plugins/denormals.php

Dan Neely 的评论应该扩展为答案:

不是非规范化或导致减速的零常数0.0f ,而是每次循环迭代接近零的值。 随着它们越来越接近于零,它们需要更高的精度来表示,并且它们变得非规范化。 这些是y[i]值。 (它们接近于零,因为x[i]/z[i]对于所有i都小于 1.0。)

代码的慢速版本和快速版本之间的关键区别在于语句y[i] = y[i] + 0.1f; . 只要在循环的每次迭代中执行此行,浮点数中的额外精度就会丢失,并且不再需要表示该精度所需的非规范化。 之后, y[i]上的浮点运算仍然很快,因为它们没有被非规范化。

为什么添加0.1f时会丢失额外的精度? 因为浮点数只有这么多有效数字。 假设您有足够的存储空间来存储三位有效数字,然后0.00001 = 1e-50.00001 + 0.1 = 0.1 ,至少对于此示例浮点格式,因为它没有空间将最低有效位存储在0.10001

简而言之, y[i]=y[i]+0.1f; y[i]=y[i]-0.1f; y[i]=y[i]+0.1f; y[i]=y[i]-0.1f; 不是您可能认为的无操作。

Mystical 也这么说:浮点数的内容很重要,而不仅仅是汇编代码。

编辑:为了更好地说明这一点,即使机器操作码相同,也不是每个浮点运算都需要相同的时间来运行。 对于某些操作数/输入,相同的指令将需要更多时间来运行。 对于非正规数尤其如此。

很长一段时间内,CPU 对于非正规数只会稍微慢一点。 我的 Zen2 CPU 需要五个时钟周期来进行非正规输入和非正规输出的计算,以及四个时钟周期和标准化数字。

这是一个用 Visual C++ 编写的小型基准测试,用于显示非正规数对性能的轻微影响:

#include <iostream>
#include <cstdint>
#include <chrono>

using namespace std;
using namespace chrono;

uint64_t denScale( uint64_t rounds, bool den );

int main()
{
    auto bench = []( bool den ) -> double
    {
        constexpr uint64_t ROUNDS = 25'000'000;
        auto start = high_resolution_clock::now();
        int64_t nScale = denScale( ROUNDS, den );
        return (double)duration_cast<nanoseconds>( high_resolution_clock::now() - start ).count() / nScale;
    };
    double
        tDen = bench( true ),
        tNorm = bench( false ),
        rel = tDen / tNorm - 1;
    cout << tDen << endl;
    cout << tNorm << endl;
    cout << trunc( 100 * 10 * rel + 0.5 ) / 10 << "%" << endl;
}

这是 MASM 组装部件。

PUBLIC ?denScale@@YA_K_K_N@Z

CONST SEGMENT
DEN DQ 00008000000000000h
ONE DQ 03FF0000000000000h
P5  DQ 03fe0000000000000h
CONST ENDS

_TEXT SEGMENT
?denScale@@YA_K_K_N@Z PROC
    xor     rax, rax
    test    rcx, rcx
    jz      byeBye
    mov     r8, ONE
    mov     r9, DEN
    test    dl, dl
    cmovnz  r8, r9
    movq    xmm1, P5
    mov     rax, rcx
loopThis:
    movq    xmm0, r8
REPT 52
    mulsd   xmm0, xmm1
ENDM
    sub     rcx, 1
    jae     loopThis
    mov     rdx, 52
    mul     rdx
byeBye:
    ret
?denScale@@YA_K_K_N@Z ENDP
_TEXT ENDS
END

很高兴在评论中看到一些结果。

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM