繁体   English   中英

释放循环双向链表中的内存

[英]freeing memory in Circular Doubly Linked List

valgrind告诉我,XX块中有XX个字节,肯定会丢失记录等等

而来源是malloc,但是,我认为这是因为我没有为malloc释放足够的内存。 无论如何,我提供了我认为导致堆错误的代码。

我知道我没有释放list_remove中的内存,我很确定这是问题的唯一来源。 它可能需要一些临时转移,但我不知道这是否是唯一的问题。

list_t *list_remove(list_t *list, list_t *node) {
    list_t *oldnode = node;
    node->prev->next = node->next;
    node->next->prev = node->prev;
    if (list != oldnode) {
        free(oldnode);
        return list;
    } else {
         list_t *value = list->next == list ? NULL : list->next;
     free(oldnode);
        return value;
    }
}

void list_free(list_t *list) {
    if (list) {
       while (list_remove(list, list_last(list)) != NULL) {}
    } 
}

list last只是给出列表的最后一个节点。

编辑:我很抱歉没有提供足够的信息,Kerrek SB,alk。 这是代码的其余部分,因为你可以看到malloc出现在newnode中,我可以在那里开始创建新列表。 结构很简单,有一个值和一个prev,下一个:

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "ll.h"

struct list {
    char *value;
    struct list *next;
    struct list *prev;
};

const char *list_node_value(list_t *node) {
    return node->value;
}

list_t *list_first(list_t *list) {
    return list;
}

list_t *list_last(list_t *list) {
    return list->prev;
}

list_t *list_next(list_t *node) {
    return node->next;
}

list_t *list_previous(list_t *node) {
    return node->prev;
}

static void failed_allocation(void) {
    fprintf(stderr, "Out of memory.\n");
    abort();
}

static list_t *new_node(const char *value) {
    list_t *node = malloc(sizeof(list_t));
    if (!node) failed_allocation();
    node->value = malloc(strlen(value)+1);
    if (!node->value) failed_allocation();
    strcpy(node->value, value);
    return node;
}

list_t *list_insert_before(list_t *list, list_t *node, const char *value) {
    list_t *insert_node = new_node(value);
    insert_node->prev = node->prev;
    insert_node->next = node;
    insert_node->next->prev = insert_node;
    insert_node->prev->next = insert_node;
    if (list == node) {
        return insert_node;
    } else {
        return list;
    }
}

list_t *list_append(list_t *list, const char *value) {
    if (list) {
        (void) list_insert_before(list, list, value);
        return list;
    } else {
        list_t *node = new_node(value);
        node->prev = node->next = node;
        return node;
    }
}

list_t *list_prepend(list_t *list, const char *value) {
    if (list) {
        return list_insert_before(list, list, value);
    } else {
        list_t *node = new_node(value);
        node->prev = node->next = node;
        return node;
    }
}

list_t *list_remove(list_t *list, list_t *node) {
    list_t *oldnode = node;
    node->prev->next = node->next;
    node->next->prev = node->prev;
    if (list != oldnode) {
        free(oldnode);
        return list;
    } else {
         list_t *value = list->next == list ? NULL : list->next;
     free(oldnode);
        return value;
    }
}

void list_free(list_t *list) {
    if (list) {
       while (list_remove(list, list_last(list)) != NULL) {}
    } 
}

void list_foreach(list_t *list, void (*function)(const char*)) {
    if (list) {
        list_t *cur = list_first(list);
        do {
            function(cur->value);
            cur = cur->next;
        } while (cur != list_first(list));
    }
}

请帮忙! 它仍然在堆中给我一个内存泄漏错误...

如果您关注list_free(),我建议您在源代码中强化删除链以下假定,当所有内容完成时,您希望* list为NULL(因为整个列表刚刚删除)。

void list_free(list_t **list) 
{
    if (list && *list)
    {
        list_t* next = (*list)->next;
        while (next && (next != *list))
        {
            list_t *tmp = next;
            next = next->next;
            free(tmp);
        }

        free(*list);
        *list = NULL;
    }
}

或类似的东西。 通过传递外部列表指针的地址来调用:

list_t *list = NULL;

.. initialize and use your list...

// free the list
list_free(&list);

编辑在OP发布更多代码之后,有几件事情很明显。

  1. list_newnode()不设置prevnext的值,因此它们包含垃圾。
  2. 这里的每个其他函数都假定(1)正确初始化next并且prev。 坦率地说,我很惊讶这在第二次添加开始时没有错。

循环列表插入必须假定正在插入的新节点可以是初始列表本身。 看起来你正在努力使这项工作变得更加困难。 请记住,循环列表可以将任何节点作为列表头,并且这比没有删除当前列表“head”时更好。 当发生这种情况时, 必须有一种机制来重新建立呼叫者新列表“head”。 同一机制必须允许在删除最后一个节点时将列表头设置为NULL。

您的代码的出现使公开尝试这样做,而无需使用指针的指针,但他们做一个循环链表的任务轻松多了。 您的代码中注意到的其他事项:

  • 您的大多数函数似乎都试图通过返回值向调用者建议列表头应该是什么。 相反,他们应该通过in / out param 强制执行它。
  • 任何相对于另一个节点插入新节点的函数都应该返回新节点。
  • list_prepend()list_append()函数应被视为相对于列表头的核心插入函数。 其他API( list_insert_before() list_insert_after()等),应该是完全相对于给你这之前或之后将有效现有节点,正如我上面所说的,返回一个指向新插入的节点总是 您将看到两个非基于root的插入器函数不再通过列表头。
  • 除了在执行解引用之前不检查无效指针外,大多数实用程序函数都是正确的。 还有一些没有,但现在至少可以管理。

以下是围绕您的大多数功能构建的代码表。 实际的节点放置例程已经完成,我尽可能地评论它们。 主测试夹具非常简单。 如果这里有重大错误,我确信SO-watchtower会很快指出它们,但代码的重点不仅仅是修复你的错误; 它是一个学习的东西:

#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <string.h>
#include <assert.h>

// node structure
typedef struct list_t {
    char *value;
    struct list_t *next;
    struct list_t *prev;
} list_t;

static void failed_allocation(void) {
    fprintf(stderr, "Out of memory.\n");
    abort();
}


// initialize a linked list header pointer. Just sets it to NULL.
void list_init(list_t** listpp)
{
    if (listpp)
        *listpp = NULL;
}

// return the value-field of a valid list node.
// otherwise return NULL if node is NULL.
const char *list_node_value(list_t *node)
{
    return (node ? node->value : NULL);
}

// return the next pointer (which may be a self-reference)
//  of a valid list_t pointer.
list_t *list_next(list_t *node)
{
    return (node ? node->next : NULL);
}

// return the previous pointer (which may be a self-reference)
//  of a valid list_t pointer.
list_t *list_previous(list_t *node)
{
    return (node ? node->prev : NULL);
}


// return the same pointer we were passed.
list_t *list_first(list_t *headp)
{
    return headp;
}

// return the previous pointer (which may be a self-reference)
//  of the given list-head pointer.
list_t *list_last(list_t *headp)
{
    return list_previous(headp);
}

// insert a new item at the end of the list, which means it
//  becomes the item previous to the head pointer. this handles
//  the case of an initially empty list, which creates the first
//  node that is self-referencing.
list_t *list_append(list_t **headpp, const char* value)
{
    if (!headpp) // error. must pass the address of a list_t ptr.
        return NULL;

    // allocate a new node.
    list_t* p = malloc(sizeof(*p));
    if (p == NULL)
        failed_allocation();

    // setup duplicate value
    p->value = (value) ? strdup(value) : NULL;

    // insert the node into the list. note that this
    //  works even when the head pointer is an initial
    //  self-referencing node.
    if (*headpp)
    {
        (*headpp)->prev->next = p;
        p->prev = (*headpp)->prev;
        p->next  = (*headpp);
        (*headpp)->prev = p;
    }
    else
    {   // no prior list. we're it. self-reference
        *headpp = p;
        p->next = p->prev = p;
    }
    return p;
}


// insert a new value into the list, returns a pointer to the
//  node allocated to hold the value. this will ALWAYS update
//  the given head pointer, since the new node is being prepended
//  to the list and by-definition becomes the new head.
list_t *list_prepend(list_t **headpp, const char* value)
{
    list_append(headpp, value);
    if (!(headpp && *headpp))
        return NULL;
    *headpp = (*headpp)->prev;
    return *headpp;
}


// insert a new node previous to the given valid node pointer.
// returns a pointer to the inserted node, or NULL on error.
list_t *list_insert_before(list_t* node, const char* value)
{
    // node *must* be a valid list_t pointer.
    if (!node)
        return NULL;
    list_prepend(&node, value);
    return node;
}


// insert a new node after the given valid node pointer.
// returns a pointer to the inserted node, or NULL on error.
list_t *list_insert_after(list_t* node, const char* value)
{
    // node *must* be a valid list_t pointer.
    if (!node)
        return NULL;
    node = node->next;
    list_prepend(&node, value);
    return node;
}


// delete a node referenced by the node pointer parameter.
//  this *can* be the root pointer, which means the root
//  must be set to the next item in the list before return.
int list_remove(list_t** headpp, list_t* node)
{
    // no list, empty list, or no node all return immediately.
    if (!(headpp && *headpp && node))
        return 1;

    // validate the node is in *this* list. it may seem odd, but
    //  we cannot just free it if the node may be in a *different*
    //  list, as it could be the other list's head-ptr.
    if (*headpp != node)
    {
        list_t *p = (*headpp)->next;
        while (p != node && p != *headpp)
            p = p->next;
        if (p == *headpp)
            return 1;
    }

    // isolate the node pointer by connecting surrounding links.
    node->next->prev = node->prev;
    node->prev->next = node->next;

    // move the head pointer if it is the same node
    if (*headpp ==  node)
        *headpp = (node != node->next) ? node->next : NULL;

    // finally we can delete the node.
    free(node->value);
    free(node);
    return 0;
}


// release the entire list. the list pointer will be reset to
//  NULL when this is finished.
void list_free(list_t **headpp)
{
    if (!(headpp && *headpp))
        return;
    while (*headpp)
        list_remove(headpp, *headpp);
}


// enumerate the list starting at the given node.
void list_foreach(list_t *listp, void (*function)(const char*))
{
    if (listp)
    {
        list_t *cur = listp;
        do {
            function(cur->value);
            cur = cur->next;
        } while (cur != listp);
    }
    printf("\n");
}

// printer callback
void print_str(const char* value)
{
    printf("%s\n", value);
}

// main entrypoint
int main(int argc, char *argv[])
{
    list_t *listp;
    list_init(&listp);

    // insert some new entries
    list_t* hello =   list_append(&listp, "Hello, Bedrock!!");
    assert(NULL != hello);
    assert(listp == hello);

    // insert Fred prior to hello. does not change the list head.
    list_t* fred = list_insert_before(hello, "Fred Flintstone");
    assert(NULL != fred);
    assert(listp == hello);
    // Hello, Bedrock!!
    // Fred Flintstone
    list_foreach(listp, print_str);

    // insert Wilma priot to Fred. does not change the list head.
    list_t* wilma = list_insert_before(fred, "Wilma Flintstone");
    assert(NULL != wilma);
    assert(list_next(wilma) == fred);
    assert(list_previous(wilma) == hello);
    // Hello, Bedrock!!
    // Wilma Flintstone
    // Fred Flintstone
    list_foreach(listp, print_str);

    list_t* barney =  list_prepend(&listp, "Barney Rubble");
    list_t* dino =    list_insert_after(wilma, "Dino");
    assert(barney != NULL);
    assert(dino != NULL);
    assert(listp == barney);
    assert(list_previous(barney) == fred);
    assert(list_next(barney) == hello);
    // Barney Rubble
    // Hello, Bedrock!!
    // Wilma Flintstone
    // Dino
    // Fred Flintstone
    list_foreach(listp, print_str);

    // remove everyone, one at a time.
    list_remove(&listp, fred);   // will not relocate the list head.
    // Barney Rubble
    // Hello, Bedrock!!
    // Wilma Flintstone
    // Dino
    list_foreach(listp, print_str);

    list_remove(&listp, hello);  // will not relocate the list head.
    // Barney Rubble
    // Wilma Flintstone
    // Dino
    list_foreach(listp, print_str);

    list_remove(&listp, barney); // will relocate the list head.
    // Wilma Flintstone
    // Dino
    list_foreach(listp, print_str);
    assert(listp == wilma);
    assert(list_next(wilma) == dino);
    assert(list_previous(listp) == dino);

    list_remove(&listp, wilma);  // will relocate the list head.
    // Dino
    list_foreach(listp, print_str);

    list_remove(&listp, dino);   // will relocate the list head;

    // generate a raft entries (a million of them)/
    char number[32];
    int i=0;
    for (;i<1000000; i++)
    {
        sprintf(number, "%d", i);
        list_append(&listp, number);
    }

    // now test freeing the entire list.
    list_free(&listp);

    return 0;
}

断言和转储是为了帮助验证算法的健全性。 此结果的输出应与代码中的注释匹配,如下所示:

Hello, Bedrock!!
Fred Flintstone

Hello, Bedrock!!
Wilma Flintstone
Fred Flintstone

Barney Rubble
Hello, Bedrock!!
Wilma Flintstone
Dino
Fred Flintstone

Barney Rubble
Hello, Bedrock!!
Wilma Flintstone
Dino

Barney Rubble
Wilma Flintstone
Dino

Wilma Flintstone
Dino

Dino

最后的想法:我通过valgrind运行,发现没有泄漏。 我很肯定它不会适应你的需要。**大部分都会(其中一半已经存在 )。

代码看起来不错。

list_tlist_t定义的? list_t是否有引用动态分配内存的成员? 如果是这样,您还需要释放那些引用的内存。

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM