簡體   English   中英

使用內聯匯編來加速矩陣乘法

[英]Using inline assembly to speed up Matrix multiplication

我一直試圖通過寄存器阻塞,SSE2矢量化和L1緩存阻塞來加速矩陣 - 矩陣乘法C < - C + alpha * A * B(注意我已經特別選擇了轉置設置op(A)= A和op( B)= B)。 經過一些努力,我的書面代碼在單線程模式下比GotoBLAS慢約50%

下面是我在L1緩存中的“內核”方矩陣 - 矩陣乘法的代碼,在Goto的工作中稱為“DGEBB”(一般塊 - 塊操作),它將兩個NB * NB平方矩陣相乘(NB限制為倍數的倍數) 4)。 我已經在GCC 4.8下檢查了它的匯編輸出,意識到編譯器在調度展開的最內層循環方面做得不好:kk-loop。 我希望編譯器優化寄存器分配以實現寄存器重用,並為流水線調度計算交錯乘法,加法和存儲操作; 但是,編譯器無法執行此操作。 出於這個原因,我想用一些內聯匯編替換最里面的循環

我是x86程序集的新手。 雖然已經讀了幾個小時的GCC 擴展的asm ,但我仍然不確定如何正確地做到這一點。 我附上了一個我能寫得最好的愚蠢版本,但我知道這是錯的。 此版本是從編譯器的kk-loop原始程序集輸出中修改的。 我知道如何使用“movl”,“movapd”等分配寄存器,我按照我喜歡的順序重新安排了計算。 但它還沒有奏效。 1)在我看來,寄存器%eax,%ebx,%ecx在組件的內部和外部使用都是令人討厭的。 2)此外,我傳遞輸入和輸出操作數的方式不起作用。 3)最后,我真的想要一個可以內聯整個kk循環的版本。 謝謝,如果有人可以幫助我!

DGEBB的C代碼(稱為DGEBB_SSE2_x86,因為我的筆記本電腦是32位x86機器,支持SSE2 - SSE4.1):

#include <stdint.h>  /* type define of "uintptr_t" */
#include <emmintrin.h>  /* double precision computation support since SSE2 */
#include <R.h>  /* use R's error handling error() */

void DGEBB_SSE2_x86 (int *NB, double *ALPHA, double *A, double *B, double *C) {
/* check "nb", must be a multiple of 4 */
int TWO=2, FOUR=4, nb=*NB; if (nb%FOUR) error("error in DGEBB_SSE2_x86: nb is not a multiple of 4!\n");
/* check memory alignment of A, B, C, 16 Byte alignment is mandatory (as XMM registers are 128-bit in length) */
uintptr_t sixteen_bytes=0xF;
if ((uintptr_t)A & sixteen_bytes) error("error in DGEBB_SSE2_x86: A is not 16 Bytes aligned in memory!");
if ((uintptr_t)B & sixteen_bytes) error("error in DGEBB_SSE2_x86: B is not 16 Bytes aligned in memory!");
if ((uintptr_t)C & sixteen_bytes) error("error in DGEBB_SSE2_x86: C is not 16 Bytes aligned in memory!");
/* define vector variables */
__m128d C1_vec_reg=_mm_setzero_pd(), C2_vec_reg=C1_vec_reg, C3_vec_reg=C1_vec_reg, C4_vec_reg=C1_vec_reg,A1_vec_reg, A2_vec_reg, B_vec_reg, U_vec_reg;
/* define scalar variables */
int jj, kk, ii, nb2=nb+nb, nb_half=nb/TWO;
double *B1_copy, *B1, *C1, *a, *b, *c, *c0;
/* start triple loop nest */
C1=C;B1=B;  /* initial column tile of C and B */
jj=nb_half;
while (jj--) {
  c=C1;B1_copy=B1;C1+=nb2;B1+=nb2;b=B1_copy;
  for (ii=0; ii<nb; ii+=FOUR) {
    a=A+ii;b=B1_copy;
    kk=nb_half;
    while (kk--) {
    /* [kernel] amortize pointer arithmetic! */
    A1_vec_reg=_mm_load_pd(a);  /* [fetch] */
    B_vec_reg=_mm_load1_pd(b);  /* [fetch] */
    U_vec_reg=_mm_mul_pd(A1_vec_reg,B_vec_reg);C1_vec_reg=_mm_add_pd(C1_vec_reg,U_vec_reg);  /* [daxpy] */
    A2_vec_reg=_mm_load_pd(a+TWO);a+=nb;  /* [fetch] */
    U_vec_reg=_mm_mul_pd(A2_vec_reg,B_vec_reg);C2_vec_reg=_mm_add_pd(C2_vec_reg,U_vec_reg);  /* [daxpy] */
    B_vec_reg=_mm_load1_pd(b+nb);b++;  /* [fetch] */
    U_vec_reg=_mm_mul_pd(A1_vec_reg,B_vec_reg);C3_vec_reg=_mm_add_pd(C3_vec_reg,U_vec_reg);  /* [daxpy] */
    A1_vec_reg=_mm_load_pd(a);  /* [fetch] */
    U_vec_reg=_mm_mul_pd(A2_vec_reg,B_vec_reg);C4_vec_reg=_mm_add_pd(C4_vec_reg,U_vec_reg);  /* [daxpy]*/
    B_vec_reg=_mm_load1_pd(b);  /* [fetch] */
    U_vec_reg=_mm_mul_pd(A1_vec_reg,B_vec_reg);C1_vec_reg=_mm_add_pd(C1_vec_reg,U_vec_reg);  /* [daxpy] */
    A2_vec_reg=_mm_load_pd(a+TWO);a+=nb;  /* [fetch] */
    U_vec_reg=_mm_mul_pd(A2_vec_reg,B_vec_reg);C2_vec_reg=_mm_add_pd(C2_vec_reg,U_vec_reg);  /* [daxpy] */
    B_vec_reg=_mm_load1_pd(b+nb);b++;  /* [fetch] */
    U_vec_reg=_mm_mul_pd(A1_vec_reg,B_vec_reg);C3_vec_reg=_mm_add_pd(C3_vec_reg,U_vec_reg);  /* [daxpy] */
    U_vec_reg=_mm_mul_pd(A2_vec_reg,B_vec_reg);C4_vec_reg=_mm_add_pd(C4_vec_reg,U_vec_reg);  /* [daxpy] */
    }  /* [end of kk-loop] */
  /* [write-back] amortize pointer arithmetic! */
  A2_vec_reg=_mm_load1_pd(ALPHA);
  U_vec_reg=_mm_load_pd(c);c0=c+nb;C1_vec_reg=_mm_mul_pd(C1_vec_reg,A2_vec_reg);  /* [fetch] */
  A1_vec_reg=U_vec_reg;C1_vec_reg=_mm_add_pd(C1_vec_reg,A1_vec_reg);U_vec_reg=_mm_load_pd(c0);  /* [fetch] */
  C3_vec_reg=_mm_mul_pd(C3_vec_reg,A2_vec_reg);_mm_store_pd(c,C1_vec_reg);c+=TWO;  /* [store] */
  A1_vec_reg=U_vec_reg;C3_vec_reg=_mm_add_pd(C3_vec_reg,A1_vec_reg);U_vec_reg=_mm_load_pd(c);  /* [fetch] */
  C2_vec_reg=_mm_mul_pd(C2_vec_reg,A2_vec_reg);_mm_store_pd(c0,C3_vec_reg);c0+=TWO;  /* [store] */
  A1_vec_reg=U_vec_reg;C2_vec_reg=_mm_add_pd(C2_vec_reg,A1_vec_reg);U_vec_reg=_mm_load_pd(c0);  /* [fetch] */
  C4_vec_reg=_mm_mul_pd(C4_vec_reg,A2_vec_reg);_mm_store_pd(c,C2_vec_reg);c+=TWO;  /* [store] */
  C4_vec_reg=_mm_add_pd(C4_vec_reg,U_vec_reg);_mm_store_pd(c0,C4_vec_reg);  /* [store] */
  C1_vec_reg=_mm_setzero_pd();C3_vec_reg=C1_vec_reg;C2_vec_reg=C1_vec_reg;C4_vec_reg=C1_vec_reg;
  }  /* [end of ii-loop] */
}  /* [end of jj-loop] */
}

我的kk-loop內聯匯編的愚蠢版本在這里:

      while (kk--) {
    asm("movapd %0, %%xmm3\n\t"     /* C1_vec_reg -> xmm3 */
        "movapd %1, %%xmm1\n\t"     /* C2_vec_reg -> xmm1 */
        "movapd %2, %%xmm2\n\t"     /* C3_vec_reg -> xmm2 */
        "movapd %3, %%xmm0\n\t"     /* C4_vec_reg -> xmm0 */
        "movl %4, %%eax\n\t"    /* pointer a -> %eax */
        "movl %5, %%edx\n\t"    /* pointer b -> %edx */
        "movl %6, %%ecx\n\t"    /* block size nb -> %ecx */
        "movapd (%%eax), %%xmm5\n\t"   /* A1_vec_reg -> xmm5 */
    "movsd (%%edx), %%xmm4\n\t"        /* B_vec_reg -> xmm4 */
    "unpcklpd %%xmm4, %%xmm4\n\t"
        "movapd %%xmm5, %%xmm6\n\t"        /* xmm5 -> xmm6 */
        "mulpd %%xmm4, %%xmm6\n\t"        /* xmm6 *= xmm4 */
    "addpd %%xmm6, %%xmm3\n\t"        /* xmm3 += xmm6 */
        "movapd 16(%%eax), %%xmm7\n\t"        /* A2_vec_reg -> xmm7 */
        "movapd %%xmm7, %%xmm6\n\t"        /* xmm7 -> xmm6 */
        "mulpd %%xmm4, %%xmm6\n\t"        /* xmm6 *= xmm4 */
    "addpd %%xmm6, %%xmm1\n\t"        /* xmm1 += xmm6 */
    "movsd (%%edx,%%ecx), %%xmm4\n\t"        /* B_vec_reg -> xmm4 */
    "addl $8, %%edx\n\t"          /* b++ */
    "movsd (%%edx), %%xmm4\n\t"       /* B_vec_reg -> xmm4 */
    "unpcklpd %%xmm4, %%xmm4\n\t"
        "movapd %%xmm5, %%xmm6\n\t"        /* xmm5 -> xmm6 */
        "mulpd %%xmm4, %%xmm6\n\t"        /* xmm6 *= xmm4 */
    "addpd %%xmm6, %%xmm2\n\t"        /* xmm2 += xmm6 */
    "addl %%ecx, %%eax\n\t"          /* a+=nb */
    "movapd (%%eax), %%xmm5\n\t"        /* A1_vec_reg -> xmm5 */
        "movapd %%xmm7, %%xmm6\n\t"        /* xmm7 -> xmm6 */
        "mulpd %%xmm4, %%xmm6\n\t"        /* xmm6 *= xmm4 */
    "addpd %%xmm6, %%xmm0\n\t"      /* xmm0 += xmm6 */
    "movsd (%%edx), %%xmm4\n\t"        /* B_vec_reg -> xmm4 */
    "unpcklpd %%xmm4, %%xmm4\n\t"
        "movapd %%xmm5, %%xmm6\n\t"        /* xmm5 -> xmm6 */
        "mulpd %%xmm4, %%xmm6\n\t"        /* xmm6 *= xmm4 */
        "addpd %%xmm6, %%xmm3\n\t"        /* xmm3 += xmm6 */
        "movapd 16(%%eax), %%xmm7\n\t"        /* A2_vec_reg -> xmm7 */
        "movapd %%xmm7, %%xmm6\n\t"        /* xmm7 -> xmm6 */
        "mulpd %%xmm4, %%xmm6\n\t"        /* xmm6 *= xmm4 */
    "addpd %%xmm6, %%xmm1\n\t"        /* xmm1 += xmm6 */
    "movsd (%%edx,%%ecx), %%xmm4\n\t"        /* B_vec_reg -> xmm4 */
    "addl $8, %%edx\n\t"          /* b++ */
    "movsd (%%edx), %%xmm4\n\t"       /* B_vec_reg -> xmm4 */
    "unpcklpd %%xmm4, %%xmm4\n\t"
        "movapd %%xmm5, %%xmm6\n\t"        /* xmm5 -> xmm6 */
        "mulpd %%xmm4, %%xmm6\n\t"        /* xmm6 *= xmm4 */
    "addpd %%xmm6, %%xmm2\n\t"        /* xmm2 += xmm6 */
        "movapd %%xmm7, %%xmm6\n\t"        /* xmm7 -> xmm6 */
        "mulpd %%xmm4, %%xmm6\n\t"        /* xmm6 *= xmm4 */
    "addpd %%xmm6, %%xmm0\n\t"      /* xmm0 += xmm6 */
    "addl %%ecx, %%eax"
        : "+x"(C1_vec_reg), "+x"(C2_vec_reg), "+x"(C3_vec_reg), "+x"(C4_vec_reg), "+m"(a), "+m"(b)
        : "x"(C1_vec_reg), "x"(C2_vec_reg), "x"(C3_vec_reg), "x"(C4_vec_reg), "4"(a), "5"(b), "rm"(nb)); 
}

以下是代碼的一些解釋:

Unrolling out loops to expose a micro "dger" kernel for register resue:
 (c11 c12) += (a1) * (b1 b2)
 (c21 c22)    (a2)
 (c31 c32)    (a3)
 (c41 c42)    (a4)
This can be implemented as 4 vectorized "daxpy":
 (c11) += (a1) * (b1)  ,  (c31) += (a3) * (b1)  ,  (c12) += (a1) * (b2)  ,  (c32) += (a3) * (b2)  .
 (c21)    (a2)   (b1)     (c41)    (a4)   (b1)     (c22)    (a2)   (b2)     (c42)    (a4)   (b2)
4 micor C-vectors are held constantly in XMM registers named C1_vec_reg, C2_vec_reg, C3_vec_reg, C4_vec_reg.
2 micro A-vectors are loaded into XMM registers named A1_vec_reg, A2_vec_reg.
2 micro B-vectors can reuse a single XMM register named B_vec_reg.
1 additional XMM register, U_vec_reg, will store temporary values.
The above scheduling exploits all 8 XMM registers on x84 architectures with SIMD unit, and each XMM is used twice after loaded.

PS:我是stats組的R用戶。 頭文件允許使用R的錯誤處理功能error()。 這將終止C程序而不是整個R程序。 如果不使用R,請刪除此行以及代碼中的相應行。

回到HPC Cholesky分解程序開發的早期階段,這是一個老問題。 C代碼已過時,程序集天真不正確。 后來的帖子跟隨這個帖子。

(C中的內聯匯編)匯編程序消息:錯誤:未知偽操作:提供內聯匯編的正確實現。

如何讓GCC完全展開這個循環(即剝離這個循環)? 提供更好的C代碼。

在編寫GCC內聯匯編時,需要注意可能的狀態標志更改。 (C中的內聯匯編)有趣的內存分段錯誤對我來說是一個教訓。

矢量化是HPC的關鍵。 SSE指令MOVSD(擴展:x86上的浮點標量和向量運算,x86-64)包含對英特爾SSE2 / 3的一些討論,而FMA指令_mm256_fmadd_pd():“132”,“231”和“213”? 有關於英特爾AVX的FMA指令的一些信息。

當然所有這些只與計算內核有關。 還有很多其他工作與最終高性能Cholesky分解例程的所有內容相關。 我的例程的第一個版本的性能是為什么我的CPU不能在HPC中保持最佳性能

目前我正在升級內核例程以獲得更高的性能。 可能會在這個帖子上有更多的帖子。 感謝堆棧溢出社區,特別是Z bosonPeter Cordes名義上的動物,以回答我的各種問題。 我學到了很多東西,在這個過程中感到很開心。 [當然,與此同時,我學會了成為更好的SO成員。]

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM