簡體   English   中英

在CompletableFuture中加入多個回調執行

[英]Join multiple callback executions in a CompletableFuture

我有以下工作代碼:

DiscoveryCallback callback = new DiscoveryCallback();
Manager.discover(someparam, callback);

我想將此調用包裝到CompletableFuture中,以具有Rx-ish API與其他異步操作組合。

Manager.discover()是第三方庫的一種方法,實際上是本機函數的綁定,並且它在不同的線程中多次執行回調。

My DiscoveryCallback實現以下接口:

interface onFoundListerner {
  onFound(List<Result> results)
  onError(Throwable error)
}

我試圖將CompletableFuture<List<Result>>的實例注入DiscoveryCallback,然后調用complete方法。 它對於一個回調執行工作正常,而其他回調則被忽略。

如何合並多個執行的結果並使包裝返回單個CompletableFuture?

異步隊列呢?

public class AsyncQueue<T> {
    private final Object lock = new Object();
    private final Queue<T> queue = new ArrayDeque<T>();
    private CompletableFuture<Void> removeCf = new CompletableFuture<>();

    public void add(T item) {
        synchronized (lock) {
            queue.add(item);
            removeCf.complete(null);
        }
    }

    public CompletableFuture<T> removeAsync() {
        CompletableFuture<Void> currentCf = null;
        synchronized (lock) {
            T item = queue.poll();
            if (item != null) {
                return CompletableFuture.completedFuture(item);
            }
            else {
                if (removeCf.isDone()) {
                    removeCf = new CompletableFuture<>();
                }
                currentCf = removeCf;
            }
        }
        return currentCf
            .thenCompose(v -> removeAsync());
    }
}

在Java 9中,可以對removeAsync返回的CompletableFuture使用.completeOnTimeout(null, timeout, unit)來具有超時機制。

在Java 9之前,您需要安排自己的超時時間。 這是帶有嵌入式超時調度程序的版本:

public class AsyncQueue<T> {
    static final ScheduledExecutorService scheduledExecutorService;

    static {
        ScheduledThreadPoolExecutor scheduledThreadPoolExecutor = new ScheduledThreadPoolExecutor(1, new ScheduledThreadFactory());
        scheduledThreadPoolExecutor.setRemoveOnCancelPolicy(true);
        scheduledExecutorService = Executors.unconfigurableScheduledExecutorService(scheduledThreadPoolExecutor);
    }

    static final class ScheduledThreadFactory implements ThreadFactory {
        static AtomicInteger scheduledExecutorThreadId = new AtomicInteger(0);

        static final synchronized int nextScheduledExecutorThreadId() {
            return scheduledExecutorThreadId.incrementAndGet();
        }

        @Override
        public Thread newThread(Runnable runnable) {
            Thread thread = new Thread(runnable, "AsynchronousSemaphoreScheduler-" + nextScheduledExecutorThreadId());
            thread.setDaemon(true);
            return thread;
        }
    }

    private final Object lock = new Object();
    private final Queue<T> queue = new ArrayDeque<T>();
    private CompletableFuture<Long> removeCf = new CompletableFuture<>();

    public void add(T item) {
        synchronized (lock) {
            queue.add(item);
            removeCf.complete(System.nanoTime());
        }
    }

    public CompletableFuture<T> removeAsync(long timeout, TimeUnit unit) {
        if (unit == null) throw new NullPointerException("unit");

        CompletableFuture<Long> currentCf = null;
        synchronized (lock) {
            T item = queue.poll();
            if (item != null) {
                return CompletableFuture.completedFuture(item);
            }
            else if (timeout <= 0L) {
                return CompletableFuture.completedFuture(null);
            }
            else {
                if (removeCf.isDone()) {
                    removeCf = new CompletableFuture<>();
                }
                currentCf = removeCf;
            }
        }
        long startTime = System.nanoTime();
        long nanosTimeout = unit.toNanos(timeout);
        CompletableFuture<T> itemCf = currentCf
            .thenCompose(endTime -> {
                long leftNanosTimeout = nanosTimeout - (endTime - startTime);
                return removeAsync(leftNanosTimeout, TimeUnit.NANOSECONDS);
            });
        ScheduledFuture<?> scheduledFuture = scheduledExecutorService
            .schedule(() -> itemCf.complete(null), timeout, unit);
        itemCf
            .thenRun(() -> scheduledFuture.cancel(true));
        return itemCf;
    }

    public CompletableFuture<T> removeAsync() {
        CompletableFuture<Long> currentCf = null;
        synchronized (lock) {
            T item = queue.poll();
            if (item != null) {
                return CompletableFuture.completedFuture(item);
            }
            else {
                if (removeCf.isDone()) {
                    removeCf = new CompletableFuture<>();
                }
                currentCf = removeCf;
            }
        }
        return currentCf
            .thenCompose(endTime -> removeAsync());
    }
}

您可以從此類中重構調度程序,以與其他類共享調度程序,也許將其分解為一個單例,該單例使用在.properties文件中設置的工廠,並且如果未配置,則使用示例中的默認值。

您可以使用ReentrantLock而不是synchronized聲明,以獲得性能的那一點點。 它僅在激烈爭用下才有意義,但是AsyncQueue<T>可以用於此類目的。

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM