簡體   English   中英

Hadoop WordCount 多個單詞未獲取公共變量

[英]Hadoop WordCount for multiple words not getting the public variables

我有一個簡單的 Hadoop 程序,我需要為 mu 大學的一篇論文實施該程序。 這是一個替代的 WordCount 問題,它應該使組合的 Text() 字符串具有 n 個單詞,並且僅與 reducer 總結那些 >= 大於 k 出現的字符串。 我已將 n 和 k 整數放在輸入和 output 文件夾(args[3] 和 args[4])之后從命令行捕獲。 問題是 n 和 k 在 mapper 和 reducer 中使用時是空的,盡管從命令中正確獲取了它們的值。 代碼如下,有什么問題?

public class MultiWordCount {

    public static int n;
    public static int k;

public static class TokenizerMapper
        extends Mapper<Object, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    private StringBuilder phrase = new StringBuilder();

    public void map(Object key, Text value, Context context
    ) throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());
        while (itr.hasMoreTokens()) {
            for (int i=0; i<n; i++) {
                if (itr.hasMoreTokens()) {
                    phrase.append(itr.nextToken());
                    phrase.append(" ");

                }
            }
            word.set(phrase.toString());
            context.write(word, one);
            phrase.setLength(0);
        }
    }
}

public static class IntSumReducer
        extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
    ) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        if(sum >= k) {
            result.set(sum);
            context.write(key, result);
        }
    }
}

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
 n = Integer.parseInt(args[2]);
 k = Integer.parseInt(args[3]);
    Job job = Job.getInstance(conf, "multi word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

盡管您基於 Java 的邏輯在這里看起來不錯,但 Map 和 Reduce function 在 Hadoop 中實現的功能比人們想象的更加短視或獨立。 To be more precise, you declare public static variables in the parent class and initialize them in the driver/main function, but the mapper/reducer instances do not have any access to the driver, but only to their strict scopes within the TokenizerMapper and IntSumReducer類。 這就是為什么當你查看映射器和減速器時nk看起來是空的。

由於您的程序只有一個作業並且在單個 Hadoop Configuration中執行,因此此處不需要Hadoop 計數器 您可以通過TokenizerMapperIntSumReducer類中的setup函數,在執行 Map 和 Reduce 函數之前聲明每個映射器和化簡器將訪問的基於Configuration的值。

要聲明這些類型的值以便將它們傳遞給 MapReduce 函數,您可以在驅動程序/主方法中執行以下操作:

conf.set("n", args[2]);

然后在TokenizerMapperIntSumReducersetup方法中訪問此值(同時將其從String轉換為int ):

n = Integer.parseInt(context.getConfiguration().get("n"));

所以程序可以如下所示:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.Counters;

import java.io.*;
import java.io.IOException;
import java.util.*;
import java.nio.charset.StandardCharsets;

public class MultiWordCount 
{
    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>
    {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        private StringBuilder phrase = new StringBuilder();
        private int n;

        protected void setup(Context context) throws IOException, InterruptedException 
        {
            n = Integer.parseInt(context.getConfiguration().get("n"));
        }

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException 
        {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) 
            {
                for (int i = 0; i < n; i++) 
                {
                    if (itr.hasMoreTokens()) 
                    {
                        phrase.append(itr.nextToken());
                        phrase.append(" ");

                    }
                }

                word.set(phrase.toString());
                context.write(word, one);
                phrase.setLength(0);
            }
        }
    }

    public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> 
    {
        private IntWritable result = new IntWritable();
        private int k;

        protected void setup(Context context) throws IOException, InterruptedException 
        {
            k = Integer.parseInt(context.getConfiguration().get("k"));
        }

        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException 
        {
            int sum = 0;
            for (IntWritable val : values) 
                sum += val.get();

            if(sum >= k) 
            {
                result.set(sum);
                context.write(key, result);
            }
        }
    }

    public static void main(String[] args) throws Exception 
    {
        Configuration conf = new Configuration();

        conf.set("n", args[2]);
        conf.set("k", args[3]);

        FileSystem fs = FileSystem.get(conf);
        if(fs.exists(new Path(args[1])))
            fs.delete(new Path(args[1]), true);

        Job job = Job.getInstance(conf, "Multi Word Count");
        job.setJarByClass(MultiWordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

對於n=3k=1 ,output 看起來像這樣(使用一些帶有弗朗茲卡夫卡句子的文本文件,如此處所示):

在此處輸入圖像描述

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM