简体   繁体   English

图像中的简单光照校正 openCV C++

[英]simple illumination correction in images openCV c++

I have some color photos and the illumination is not regular in the photos: one side of the image is brighter than the other side.我有一些彩色照片,照片中的照明不规则:图像的一侧比另一侧更亮。

I would like to solve this problem by correcting the illumination.我想通过校正照明来解决这个问题。 I think local contrast will help me but I don't know how :(我认为局部对比会帮助我,但我不知道如何:(

Would you please help me with a piece of code or a pipeline ?你能帮我写一段代码或管道吗?

Convert the RGB image to Lab color-space (eg, any color-space with a luminance channel will work fine), then apply adaptive histogram equalization to the L channel.将 RGB 图像转换为 Lab 颜色空间(例如,任何具有亮度通道的颜色空间都可以正常工作),然后将自适应直方图均衡应用于 L 通道。 Finally convert the resulting Lab back to RGB.最后将生成的 Lab 转换回 RGB。

What you want is OpenCV's CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm.你想要的是 OpenCV 的 CLAHE(Contrast Limited Adaptive Histogram Equalization)算法。 However, as far as I know it is not documented.但是,据我所知,它没有记录。 There is an example in python . 在 python 中一个例子 You can read about CLAHE in Graphics Gems IV, pp474-485您可以在Graphics Gems IV, pp474-485 中阅读有关 CLAHE 的信息

Here is an example of CLAHE in action:以下是 CLAHE 的示例:在此处输入图片说明

And here is the C++ that produced the above image, based on http://answers.opencv.org/question/12024/use-of-clahe/ , but extended for color.这是生成上述图像的 C++,基于http://answers.opencv.org/question/12024/use-of-clahe/ ,但扩展了颜色。

#include <opencv2/core.hpp>
#include <vector>       // std::vector
int main(int argc, char** argv)
{
    // READ RGB color image and convert it to Lab
    cv::Mat bgr_image = cv::imread("image.png");
    cv::Mat lab_image;
    cv::cvtColor(bgr_image, lab_image, CV_BGR2Lab);

    // Extract the L channel
    std::vector<cv::Mat> lab_planes(3);
    cv::split(lab_image, lab_planes);  // now we have the L image in lab_planes[0]

    // apply the CLAHE algorithm to the L channel
    cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE();
    clahe->setClipLimit(4);
    cv::Mat dst;
    clahe->apply(lab_planes[0], dst);

    // Merge the the color planes back into an Lab image
    dst.copyTo(lab_planes[0]);
    cv::merge(lab_planes, lab_image);

   // convert back to RGB
   cv::Mat image_clahe;
   cv::cvtColor(lab_image, image_clahe, CV_Lab2BGR);

   // display the results  (you might also want to see lab_planes[0] before and after).
   cv::imshow("image original", bgr_image);
   cv::imshow("image CLAHE", image_clahe);
   cv::waitKey();
}

The answer provided by Bull is the best I have come across so far. Bull 提供的答案是迄今为止我遇到的最好的答案。 I have been using it to.我一直在使用它。 Here is the python code for the same:这是相同的python代码:

import cv2

#-----Reading the image-----------------------------------------------------
img = cv2.imread('Dog.jpg', 1)
cv2.imshow("img",img) 

#-----Converting image to LAB Color model----------------------------------- 
lab= cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
cv2.imshow("lab",lab)

#-----Splitting the LAB image to different channels-------------------------
l, a, b = cv2.split(lab)
cv2.imshow('l_channel', l)
cv2.imshow('a_channel', a)
cv2.imshow('b_channel', b)

#-----Applying CLAHE to L-channel-------------------------------------------
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
cl = clahe.apply(l)
cv2.imshow('CLAHE output', cl)

#-----Merge the CLAHE enhanced L-channel with the a and b channel-----------
limg = cv2.merge((cl,a,b))
cv2.imshow('limg', limg)

#-----Converting image from LAB Color model to RGB model--------------------
final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
cv2.imshow('final', final)

#_____END_____#

Based on the great C++ example written by Bull , I was able to write this method for Android.基于Bull 编写的出色的C++ 示例,我能够为 Android 编写此方法。

I have substituted "Core.extractChannel" for "Core.split".我已将“Core.extractChannel”替换为“Core.split”。 This avoids a known memory leak issue .这避免了已知的内存泄漏问题

public void applyCLAHE(Mat srcArry, Mat dstArry) { 
    //Function that applies the CLAHE algorithm to "dstArry".

    if (srcArry.channels() >= 3) {
        // READ RGB color image and convert it to Lab
        Mat channel = new Mat();
        Imgproc.cvtColor(srcArry, dstArry, Imgproc.COLOR_BGR2Lab);

        // Extract the L channel
        Core.extractChannel(dstArry, channel, 0);

        // apply the CLAHE algorithm to the L channel
        CLAHE clahe = Imgproc.createCLAHE();
        clahe.setClipLimit(4);
        clahe.apply(channel, channel);

        // Merge the the color planes back into an Lab image
        Core.insertChannel(channel, dstArry, 0);

        // convert back to RGB
        Imgproc.cvtColor(dstArry, dstArry, Imgproc.COLOR_Lab2BGR);

        // Temporary Mat not reused, so release from memory.
        channel.release();
    }

}

And call it like so:并这样称呼它:

public Mat onCameraFrame(CvCameraViewFrame inputFrame){
    Mat col = inputFrame.rgba();

    applyCLAHE(col, col);//Apply the CLAHE algorithm to input color image.

    return col;
}

You can also use Adaptive Histogram Equalisation,您还可以使用自适应直方图均衡,

from skimage import exposure

img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.03)

You can try the following code:您可以尝试以下代码:

#include "opencv2/opencv.hpp"
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char** argv)
{

    cout<<"Usage: ./executable input_image output_image \n";

    if(argc!=3)
    {
        return 0;
    }


    int filterFactor = 1;
    Mat my_img = imread(argv[1]);
    Mat orig_img = my_img.clone();
    imshow("original",my_img);

    Mat simg;

    cvtColor(my_img, simg, CV_BGR2GRAY);

    long int N = simg.rows*simg.cols;

    int histo_b[256];
    int histo_g[256];
    int histo_r[256];

    for(int i=0; i<256; i++){
        histo_b[i] = 0;
        histo_g[i] = 0;
        histo_r[i] = 0;
    }
    Vec3b intensity;

    for(int i=0; i<simg.rows; i++){
        for(int j=0; j<simg.cols; j++){
            intensity = my_img.at<Vec3b>(i,j);

            histo_b[intensity.val[0]] = histo_b[intensity.val[0]] + 1;
            histo_g[intensity.val[1]] = histo_g[intensity.val[1]] + 1;
            histo_r[intensity.val[2]] = histo_r[intensity.val[2]] + 1;
        }
    }

    for(int i = 1; i<256; i++){
        histo_b[i] = histo_b[i] + filterFactor * histo_b[i-1];
        histo_g[i] = histo_g[i] + filterFactor * histo_g[i-1];
        histo_r[i] = histo_r[i] + filterFactor * histo_r[i-1];
    }

    int vmin_b=0;
    int vmin_g=0;
    int vmin_r=0;
    int s1 = 3;
    int s2 = 3;

    while(histo_b[vmin_b+1] <= N*s1/100){
        vmin_b = vmin_b +1;
    }
    while(histo_g[vmin_g+1] <= N*s1/100){
        vmin_g = vmin_g +1;
    }
    while(histo_r[vmin_r+1] <= N*s1/100){
        vmin_r = vmin_r +1;
    }

    int vmax_b = 255-1;
    int vmax_g = 255-1;
    int vmax_r = 255-1;

    while(histo_b[vmax_b-1]>(N-((N/100)*s2)))
    {   
        vmax_b = vmax_b-1;
    }
    if(vmax_b < 255-1){
        vmax_b = vmax_b+1;
    }
    while(histo_g[vmax_g-1]>(N-((N/100)*s2)))
    {   
        vmax_g = vmax_g-1;
    }
    if(vmax_g < 255-1){
        vmax_g = vmax_g+1;
    }
    while(histo_r[vmax_r-1]>(N-((N/100)*s2)))
    {   
        vmax_r = vmax_r-1;
    }
    if(vmax_r < 255-1){
        vmax_r = vmax_r+1;
    }

    for(int i=0; i<simg.rows; i++)
    {
        for(int j=0; j<simg.cols; j++)
        {

            intensity = my_img.at<Vec3b>(i,j);

            if(intensity.val[0]<vmin_b){
                intensity.val[0] = vmin_b;
            }
            if(intensity.val[0]>vmax_b){
                intensity.val[0]=vmax_b;
            }


            if(intensity.val[1]<vmin_g){
                intensity.val[1] = vmin_g;
            }
            if(intensity.val[1]>vmax_g){
                intensity.val[1]=vmax_g;
            }


            if(intensity.val[2]<vmin_r){
                intensity.val[2] = vmin_r;
            }
            if(intensity.val[2]>vmax_r){
                intensity.val[2]=vmax_r;
            }

            my_img.at<Vec3b>(i,j) = intensity;
        }
    }

    for(int i=0; i<simg.rows; i++){
        for(int j=0; j<simg.cols; j++){

            intensity = my_img.at<Vec3b>(i,j);
            intensity.val[0] = (intensity.val[0] - vmin_b)*255/(vmax_b-vmin_b);
            intensity.val[1] = (intensity.val[1] - vmin_g)*255/(vmax_g-vmin_g);
            intensity.val[2] = (intensity.val[2] - vmin_r)*255/(vmax_r-vmin_r);
            my_img.at<Vec3b>(i,j) = intensity;
        }
    }   


    // sharpen image using "unsharp mask" algorithm
    Mat blurred; double sigma = 1, threshold = 5, amount = 1;
    GaussianBlur(my_img, blurred, Size(), sigma, sigma);
    Mat lowContrastMask = abs(my_img - blurred) < threshold;
    Mat sharpened = my_img*(1+amount) + blurred*(-amount);
    my_img.copyTo(sharpened, lowContrastMask);    

    imshow("New Image",sharpened);
    waitKey(0);

    Mat comp_img;
    hconcat(orig_img, sharpened, comp_img);
    imwrite(argv[2], comp_img);
}

Check here for more details.查看此处了解更多详情。

The value channel of HSV is the maximum of B,G,R values. HSV 的值通道是 B、G、R 值中的最大值。 So the perceived brightness can be obtained with the following formula.因此,感知亮度可以通过以下公式获得。 在此处输入图片说明

I have applied CLAHE to this channel and It looks good.我已经将 CLAHE 应用到这个频道,看起来不错。

  1. I calculate the perceived brightness channel of the image我计算图像的感知亮度通道
  2. I change the image into HSV or LAB colour space我将图像更改为 HSV 或 LAB 色彩空间
  3. I replace the V channel from the image by adding the CLAHE applied perceived brightness channel, if I changed the image colour space to HSV.如果我将图像颜色空间更改为 HSV,我会通过添加 CLAHE 应用感知亮度通道来替换图像中的 V 通道。

3.* I replace the L channel from the image by adding the CLAHE applied perceived brightness channel, if I changed the image colour space to LAB. 3.* 如果我将图像色彩空间更改为 LAB,我会通过添加 CLAHE 应用感知亮度通道来替换图像中的 L 通道。 4. Then I again convert the image into BGR format. 4. 然后我再次将图像转换为 BGR 格式。

The python code for my steps我的步骤的python代码

import cv2
import numpy as np

original = cv2.imread("/content/rqq0M.jpg")

def get_perceive_brightness(img):
    float_img = np.float64(img)  # unit8 will make overflow
    b, g, r = cv2.split(float_img)
    float_brightness = np.sqrt(
        (0.241 * (r ** 2)) + (0.691 * (g ** 2)) + (0.068 * (b ** 2)))
    brightness_channel = np.uint8(np.absolute(float_brightness))
    return brightness_channel

perceived_brightness_channel = get_perceive_brightness(original)

clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
clahe_applied_perceived_channel = clahe.apply(perceived_brightness_channel) 

def hsv_equalizer(img, new_channel):
  hsv = cv2.cvtColor(original, cv2.COLOR_BGR2HSV)
  h,s,v =  cv2.split(hsv)
  merged_hsv = cv2.merge((h, s, new_channel))
  bgr_img = cv2.cvtColor(merged_hsv, cv2.COLOR_HSV2BGR)
  return bgr_img

def lab_equalizer(img, new_channel):
 lab = cv2.cvtColor(original, cv2.COLOR_BGR2LAB)
  l,a,b =  cv2.split(lab)
  merged_lab = cv2.merge((new_channel,a,b))
  bgr_img = cv2.cvtColor(merged_hsv, cv2.COLOR_LAB2BGR)
  return bgr_img

hsv_equalized_img = hsv_equalizer(original,clahe_applied_perceived_channel)
lab_equalized_img = lab_equalizer(original,clahe_applied_perceived_channel)

Output of the hsv_equalized_img hsv_equalized_img 的输出

在此处输入图片说明 The output of the lab_equlized_img lab_equlized_img 的输出

在此处输入图片说明

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM