简体   繁体   English

n的渐近增长选择楼层(n/2)

[英]the asymptotic growth of n choose floor(n/2)

How can I find the asymptotic growth of n choose floor(n/2) ?如何找到 n choose floor(n/2) 的渐近增长? I tried to use the expansion and got that it is equal to我尝试使用扩展并得到它等于

[n*(n-1)*........*(floor(n/2)+1)] / (n-floor(n/2))!

Any idea how can i go from there?知道我怎么去那里吗? Any help is appreciated, prefer hints over answers任何帮助表示赞赏,更喜欢提示而不是答案

I agree with the answer above but would like to provide more depth.我同意上面的答案,但想提供更多深度。 Assuming n is even, we have:假设n是偶数,我们有:

asdf

To upper bound this, we use the upper bound of Stirling's Approximation in the numerator and the lower bound in the denominator (eg we want the largest numerator and smallest denominator).为了设定上限,我们在分子中使用斯特林近似的上限,在分母中使用下限(例如,我们想要最大的分子和最小的分母)。 This will give us the upper bound:这将为我们提供上限:

2

We then distribute the exponent in the denominator to get:然后我们将指数分布在分母中得到:

3

Cancel out抵消4, move , 移动5from denominator to numerator and simplify;从分母到分子并化简; we get:我们得到:

6

Follow the same process with the lower bound, put Stirling's approx upper bound in the denominator, and lower bound in the numerator.对下界执行相同的过程,将斯特林近似上界放在分母中,将下界放在分子中。 This will yield:这将产生:

7

We then know it's lower bounded by some constant times然后我们知道它的下限是一些常数时间8and it's upper bounded by another constant times它的上限是另一个常数时间8. .

Thus, we conclude its asymptotic growth is因此,我们得出结论它的渐近增长是9 . .

Using Stirling's approximation , you get使用斯特林近似,你得到

n! = \sqrt{2n\pi}(n/e)^n

If you substitute it into $\\choose{n}{n/2}$, you should eventually end up with如果你把它代入 $\\choose{n}{n/2}$,你最终应该得到

2^{n+1/2}/\sqrt{n\pi}

PS.附注。 you might want to check my math before you actually use the answer :-)在实际使用答案之前,您可能想检查一下我的数学:-)

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM