简体   繁体   English

沿多维数组的任意轴减少(和)

[英]Reduction (sum) along arbitrary axes of a multidimensional array

I want to perform a sum reduction along arbitrary axes of a multidimensional matrix which may have arbitrary dimensions (eg axis 5 of a 10-dimensional array). 我想沿多维矩阵的任意轴执行和减少,该多维矩阵可以具有任意尺寸(例如,10维阵列的轴5)。 The matrix is stored using the row-major format, ie as a vector together with the strides along each axis. 矩阵使用行主格式存储,即作为vector与沿每个轴的步幅一起存储。

I know how to perform this reduction using nested loops (see example below), but doing this results in a hard-coded axis (the reduction is along axis 1 below) and an arbitrary number of dimensions (4 below). 我知道如何使用嵌套循环执行此缩减(请参见下面的示例),但这样做会导致硬编码轴(缩减沿着下面的轴1)和任意数量的维度(下面的4)。 How can I generalize this without using the nested loops? 如何在不使用嵌套循环的情况下对此进行概括?


#include <iostream>
#include <vector>

int main()
{
  // shape, stride & data of the matrix

  size_t shape  [] = { 2, 3, 4, 5};
  size_t strides[] = {60,20, 5, 1};

  std::vector<double> data(2*3*4*5);

  for ( size_t i = 0 ; i < data.size() ; ++i ) data[i] = 1.;

  // shape, stride & data (zero-initialized) of the reduced matrix

  size_t rshape  [] = { 2, 4, 5};
  size_t rstrides[] = {20, 5, 1};

  std::vector<double> rdata(2*4*5, 0.0);

  // compute reduction

  for ( size_t a = 0 ; a < shape[0] ; ++a )
    for ( size_t c = 0 ; c < shape[2] ; ++c )
      for ( size_t d = 0 ; d < shape[3] ; ++d )
        for ( size_t b = 0 ; b < shape[1] ; ++b )
          rdata[ a*rstrides[0]                 + c*rstrides[1] + d*rstrides[2] ] += \
          data [ a*strides [0] + b*strides [1] + c*strides [2] + d*strides [3] ];

  // print resulting reduced matrix

  for ( size_t a = 0 ; a < rshape[0] ; ++a )
    for ( size_t b = 0 ; b < rshape[1] ; ++b )
      for ( size_t c = 0 ; c < rshape[2] ; ++c )
        std::cout << "(" << a << "," << b << "," << c << ") " << \
        rdata[ a*rstrides[0] + b*rstrides[1] + c*rstrides[2] ] << std::endl;

  return 0;
}

Note: I want to avoid 'decompressing' and 'compressing' a counter. 注意:我想避免'解压缩'和'压缩'计数器。 By this I mean that I could, in pseudo-code, do: 我的意思是,我可以用伪代码做:

for ( size_t i = 0 ; i < data.size() ; ++i ) 
{
  i -> {a,b,c,d}

  discard "b" (axis 1) -> {a,c,d}

  rdata(a,c,d) += data(a,b,c,d)
}

I don't know how efficient this code is, but in my opinion, it is sure to be precise. 我不知道这个代码有多高效,但在我看来,它确实是准确的。

What's going on? 这是怎么回事?

A little on adjusted_strides : 关于adjusted_strides一点点:

For axis_count = 4 , adjusted_strides has size 5 , where: 对于axis_count = 4adjusted_strides大小为5 ,其中:

 adjusted_strides[0] = shape[0]*shape[1]*shape[2]*shape[3];
 adjusted_strides[1] = shape[1]*shape[2]*shape[3];
 adjusted_strides[2] = shape[2]*shape[3];
 adjusted_strides[3] = shape[3];
 adjusted_strides[4] = 1;

Let's take the example where the number of dimensions is 4 and the shape of the multidimensional array ( A ) is n0, n1, n2, n3 . 让我们以维数为4 ,多维数组( A )的形状为n0, n1, n2, n3为例。

When we need to transform this array into another multidimensional array ( B ) of shape: n0, n2, n3 (compressing axis = 1 (0-based) ), then, we try to proceed as follows: 当我们需要将这个数组转换成另一个形状的多维数组( B ): n0, n2, n3 (压缩axis = 1 (0-based) )时,我们尝试按如下方式进行:

For each index of A we try to find its position in B . 对于A每个指数,我们试图找到它在B位置。 Let A[i][j][k][l] be any element in A . A[i][j][k][l]A任何元素。 Its position in flat_A will be A[i*n1*n2*n3 + j*n2*n3 + k*n3 + l] 它在flat_A位置将是A[i*n1*n2*n3 + j*n2*n3 + k*n3 + l]

idx = i*n1*n2*n3 + j*n2*n3 + k*n3 + l;

In the compressed array B , this element will be a part of (or added to), B[i][k][l] . 在压缩数组B ,该元素将是B[i][k][l]的一部分(或添加到其中)。 In flat_B the index is new_idx = i*n2*n3 + k*n3 + l; flat_B ,索引是new_idx = i*n2*n3 + k*n3 + l; .

How do we form new_idx from idx ? 那我们怎样形成new_idxidx

  1. All the axes before the compressed axis have the shape of the compressed axis as a part of their product. 压缩轴之前的所有轴都具有压缩轴的形状作为其产品的一部分。 In our example we had to remove axis 1 , so all the axes which were before the 1st axis (only one here: the 0th axis ) represented by i ), have n1 as a part of product ( i*n1*n2*n3 ). 在我们的例子中,我们必须删除轴1 ,因此i )所代表的0th axis 1轴之前的所有轴(这里只有一个:第0th axis ), n1作为产品的一部分( i*n1*n2*n3 ) 。

  2. All the axes after the compressed axis remain unaffected. 压缩轴后的所有轴都不受影响。

  3. Finally, we need to do two things: 最后,我们需要做两件事:

    1. Isolate the indices of the axes before the index of the axis to be compressed and remove the shape of this axis: 在要压缩的轴的索引之前隔离轴的索引,并删除此轴的形状:

      Integer division : idx / (n1*n2*n3); 整数除法idx / (n1*n2*n3); ( == idx / adjusted_strides[1] ). == idx / adjusted_strides[1] )。

      We are left with just i , which can be readjusted according to the new shape (by multiplying with n2*n3 ): we get 我们只剩下i ,可以根据新形状重新调整(乘以n2*n3 ):我们得到

      i*n2*n3 ( == i * adjusted_strides[2] ). i*n2*n3== i * adjusted_strides[2] )。

    2. We isolate the axes after the compressed axis, which are unaffected by its shape. 我们在压缩轴之后隔离轴,这些轴不受其形状的影响。

      idx % (n2*n3) ( == idx % adjusted_strides[2] ) idx % (n2*n3)== idx % adjusted_strides[2]

      which gives us k*n3 + l . 这给了我们k*n3 + l

    3. Adding the results of step i. 添加步骤i的结果 and ii. ii。 results in: 结果是:

      computed_idx = i*n2*n3 + k*n3 + l;

      Which is the same as new_idx . 这与new_idx相同。 So, our transformation was correct :). 所以,我们的转型是正确的:)。

Code: 码:

Note: ni refers to new_idx . 注意: ni指的是new_idx

  size_t cmp_axis = 1, axis_count = sizeof shape/ sizeof *shape;
  std::vector<size_t> adjusted_strides;
  //adjusted strides is basically same as strides
  //only difference being that the first element is the 
  //total number of elements in the n dim array.

  //The only reason to introduce this array was
  //so that I don't have to write any if-elses
  adjusted_strides.push_back(shape[0]*strides[0]);
  adjusted_strides.insert(adjusted_strides.end(), strides, strides + axis_count);
  for(size_t i = 0; i < data.size(); ++i) {
    size_t ni = i/adjusted_strides[cmp_axis]*adjusted_strides[cmp_axis+1] + i%adjusted_strides[cmp_axis+1];
    rdata[ni] += data[i];
  }

Output (axis = 1) 输出(轴= 1)

(0,0,0) 3
(0,0,1) 3
(0,0,2) 3
(0,0,3) 3
(0,0,4) 3
(0,1,0) 3
(0,1,1) 3
(0,1,2) 3
(0,1,3) 3
(0,1,4) 3
(0,2,0) 3
(0,2,1) 3
(0,2,2) 3
(0,2,3) 3
(0,2,4) 3
(0,3,0) 3
(0,3,1) 3
(0,3,2) 3
...

Tested here . 在这里测试

For further reading, refer to this . 如需进一步阅读,请参阅此处

I think this should work: 我认为这应该有效:

#include <iostream>
#include <vector>

int main()
{
  // shape, stride & data of the matrix
  size_t shape  [] = {  2, 3, 4, 5};
  size_t strides[] = {60, 20, 5, 1};
  std::vector<double> data(2 * 3 * 4 * 5);

  size_t rshape  [] = { 2, 4, 5};
  size_t rstrides[] = {3, 5, 1};
  std::vector<double> rdata(2 * 4 * 5, 0.0);

  const unsigned int NDIM = 4;
  unsigned int axis = 1;

  for (size_t i = 0 ; i < data.size() ; ++i) data[i] = 1;

  // How many elements to advance after each reduction
  size_t step_axis = strides[NDIM - 1];
  if (axis == NDIM - 1)
  {
      step_axis = strides[NDIM - 2];
  }
  // Position of the first element of the current reduction
  size_t offset_base = 0;
  size_t offset = 0;
  size_t s = 0;
  for (auto &v : rdata)
  {
      // Current reduced element
      size_t offset_i = offset;
      for (unsigned int i = 0; i < shape[axis]; i++)
      {
          // Reduce
          v += *(data.data() + offset_i);
          // Advance to next element
          offset_i += strides[axis];
      }
      s = (s + 1) % strides[axis];
      if (s == 0)
      {
          offset_base += strides[axis - 1];
          offset = offset_base;
      }
      else
      {
          offset += step_axis;
      }
  }

  // Print
  for ( size_t a = 0 ; a < rshape[0] ; ++a )
    for ( size_t b = 0 ; b < rshape[1] ; ++b )
      for ( size_t c = 0 ; c < rshape[2] ; ++c )
        std::cout << "(" << a << "," << b << "," << c << ") " << \
        rdata[ a*rstrides[0] + b*rstrides[1] + c*rstrides[2] ] << std::endl;

  return 0;
}

Output: 输出:

(0,0,0) 3
(0,0,1) 3
(0,0,2) 3
(0,0,3) 3
(0,0,4) 3
(0,1,0) 3
(0,1,1) 3
(0,1,2) 3
(0,1,3) 3
(0,1,4) 3
(0,2,0) 3
(0,2,1) 3
(0,2,2) 3
// ...

Setting axis = 3 yields: 设置axis = 3产生:

(0,0,0) 5
(0,0,1) 5
(0,0,2) 5
(0,0,3) 5
(0,0,4) 5
(0,1,0) 5
(0,1,1) 5
(0,1,2) 5
(0,1,3) 5
(0,1,4) 5
(0,2,0) 5
(0,2,1) 5
(0,2,2) 5
(0,2,3) 5
// ...

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM