简体   繁体   English

Python中的曲线拟合指数增长函数

[英]Curve fit exponential growth function in Python

I have the following data points that I would like to curve fit: 我想曲线拟合以下数据点:

import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit

t = np.array([15474.6, 15475.6, 15476.6, 15477.6, 15478.6, 15479.6, 15480.6,
              15481.6, 15482.6, 15483.6, 15484.6, 15485.6, 15486.6, 15487.6,
              15488.6, 15489.6, 15490.6, 15491.6, 15492.6, 15493.6, 15494.6,
              15495.6, 15496.6, 15497.6, 15498.6, 15499.6, 15500.6, 15501.6,
              15502.6, 15503.6, 15504.6, 15505.6, 15506.6, 15507.6, 15508.6,
              15509.6, 15510.6, 15511.6, 15512.6, 15513.6])

v = np.array([4.082, 4.133, 4.136, 4.138, 4.139, 4.14, 4.141, 4.142, 4.143,
              4.144, 4.144, 4.145, 4.145, 4.147, 4.146, 4.147, 4.148, 4.148,
              4.149, 4.149, 4.149, 4.15, 4.15, 4.15, 4.151, 4.151, 4.152,
              4.152, 4.152, 4.153, 4.153, 4.153, 4.153, 4.154, 4.154, 4.154,
              4.154, 4.154, 4.155, 4.155])

The exponential function that I want to fit to the data is: 我要适合数据的指数函数是:

功能

The Python function representing the above formula and the associated curve fit with the data is detailed below: 代表上述公式的Python函数以及与数据拟合的相关曲线如下所示:

def func(t, a, b, alpha):
    return a - b * np.exp(-alpha * t)


# scale vector to start at zero otherwise exponent is too large
t_scale = t - t[0]

# initial guess for curve fit coefficients
a0 = v[-1]
b0 = v[0]
alpha0 = 1/t_scale[-1]

# coefficients and curve fit for curve
popt4, pcov4 = curve_fit(func, t_scale, v, p0=(a0, b0, alpha0))

a, b, alpha = popt4
v_fit = func(t_scale, a, b, alpha)

ss_res = np.sum((v - v_fit) ** 2)       # residual sum of squares
ss_tot = np.sum((v - np.mean(v)) ** 2)  # total sum of squares
r2 = 1 - (ss_res / ss_tot)              # R squared fit, R^2

The data compared to the curve fit is plotted below. 与曲线拟合比较的数据绘制在下面。 The parameters and R squared value are also provided. 还提供了参数和R平方值。

数字

a0 = 4.1550   b0 = 4.0820   alpha0 = 0.0256
a = 4.1490    b = 0.0645    alpha = 0.9246
R² = 0.8473

Is it possible to get a better fit with the data using the approach outlined above or do I need to use a different form of the exponential equation? 是否可以使用上述方法更好地拟合数据,还是需要使用其他形式的指数方程式?

I'm also not sure what to use for the initial values ( a0 , b0 , alpha0 ). 我也不确定初始值( a0b0alpha0 )使用什么。 In the example, I chose points from the data but that may not be the best method. 在示例中,我从数据中选择了点,但这可能不是最佳方法。 Any suggestions on what to use for the initial guess for the curve fit coefficients? 有什么建议可以用于曲线拟合系数的初始猜测?

To me this looks like something that is better fit by multiple components, rather than a single exponential. 在我看来,这似乎更适合多个组件,而不是单个指数。

def func(t, a, b, c, d, e):
    return a*np.exp(-t/b) + c*np.exp(-t/d) + e


# scale vector to start at zero otherwise exponent is too large
t_scale = t - t[0]

# initial guess for curve fit coefficients
guess = [1, 1, 1, 1, 0]

# coefficients and curve fit for curve
popt, pcov = curve_fit(func, t_scale, v, p0=guess)

v_fit = func(t_scale, *popt)

在此处输入图片说明

The best single 3-parameter equation I could find, R-squared = 0.9952, was an x-shifted power function: 我可以找到的最佳单3参数方程式R平方= 0.9952是x位移幂函数:

y = pow((a + x), b) + Offset

with parameters: 带有参数:

a = -1.5474599569484271E+04
b =  6.3963649365056151E-03
Offset =  3.1303674911990789E+00

模型

If you remove the first data point, you will get a much better fit. 如果删除第一个数据点,则拟合效果更好。

Using lmfit ( https://lmfit.github.io/lmfit-py ), which provides a higher-level and easier to use interface to curve-fitting, your fitting script would look like this: 使用lmfit( https://lmfit.github.io/lmfit-py )(它提供了更高级别且更易于使用的界面进行曲线拟合),拟合脚本如下所示:

import matplotlib.pyplot as plt
import numpy as np
from lmfit import Model

t = np.array([15474.6, 15475.6, 15476.6, 15477.6, 15478.6, 15479.6, 15480.6,
              15481.6, 15482.6, 15483.6, 15484.6, 15485.6, 15486.6, 15487.6,
              15488.6, 15489.6, 15490.6, 15491.6, 15492.6, 15493.6, 15494.6,
              15495.6, 15496.6, 15497.6, 15498.6, 15499.6, 15500.6, 15501.6,
              15502.6, 15503.6, 15504.6, 15505.6, 15506.6, 15507.6, 15508.6,
              15509.6, 15510.6, 15511.6, 15512.6, 15513.6])

v = np.array([4.082, 4.133, 4.136, 4.138, 4.139, 4.14, 4.141, 4.142, 4.143,
              4.144, 4.144, 4.145, 4.145, 4.147, 4.146, 4.147, 4.148, 4.148,
              4.149, 4.149, 4.149, 4.15, 4.15, 4.15, 4.151, 4.151, 4.152,
              4.152, 4.152, 4.153, 4.153, 4.153, 4.153, 4.154, 4.154, 4.154,
              4.154, 4.154, 4.155, 4.155])

def func(t, a, b, alpha):
    return a + b * np.exp(-alpha * t)

# remove first data point, take offset from t
tx = t[1:] - t[0]
vx = v[1:]

# turn your model function into a Model
amodel = Model(func)
# create parameters with initial values.  Note that parameters
# are named from the arguments of your model function.
params = amodel.make_params(a=v[0], b=0, alpha=1.0/(t[-1]-t[0]))

# fit the data to the model with the parameters
result = amodel.fit(vx, params, t=tx)

# print the fit statistics and resulting parameters
print(result.fit_report())

# plot data and fit
plt.plot(t, v, 'o', label='data')
plt.plot(t, result.eval(result.params, t=(t-t[0])), '--', label='fit')
plt.legend()
plt.show()

This will print out these results 这将打印出这些结果

[[Model]]
    Model(func)
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 44
    # data points      = 39
    # variables        = 3
    chi-square         = 1.1389e-05
    reduced chi-square = 3.1635e-07
    Akaike info crit   = -580.811568
    Bayesian info crit = -575.820883
[[Variables]]
    a:      4.15668660 +/- 5.0662e-04 (0.01%) (init = 4.082)
    b:     -0.02312772 +/- 4.1930e-04 (1.81%) (init = 0)
    alpha:  0.06004740 +/- 0.00360126 (6.00%) (init = 0.02564103)
[[Correlations]] (unreported correlations are < 0.100)
    C(a, alpha) = -0.945
    C(a, b)     = -0.682
    C(b, alpha) =  0.465

and show this plot for the fit: 并显示此图以进行拟合:

在此处输入图片说明

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM