简体   繁体   English

GEKKO 补料分批生物反应器 ODE 方程的不可行系统

[英]GEKKO Infeasible system of ODE equations of a fed-batch Bioreactor

I am new to GEKKO and also to modeling bioreactors, so I might be missing something obvious.我是 GEKKO 的新手,也是生物反应器建模的新手,所以我可能会遗漏一些明显的东西。

I have a system of 10 ODEs that describe a fed-batch bioreactor.我有一个由 10 个 ODE 组成的系统,用于描述补料分批生物反应器。 All constants are given.给出了所有常数。 The picture below shows the expected behavior of this model (extracted from a paper).下图显示了该模型的预期行为(摘自论文)。 However, the only feasible solution I found is when Viable Cells Density (XV) = 0, and stays 0 for all time t, or if time T is really small (<20).然而,我找到的唯一可行的解​​决方案是当活细胞密度 (XV) = 0,并且在所有时间 t 内保持为 0,或者如果时间 T 非常小 (<20)。 If a lower boundary >= 0 or initial value is set to XV and t > 20, the system becomes infeasible.如果下边界 >= 0 或初始值设置为 XV 且 t > 20,则系统变得不可行。

Equations and constants were checked multiple times.多次检查方程和常数。 I tried giving initial values to my variables, but it didn't work either.我尝试为我的变量提供初始值,但它也不起作用。 I can only think of two problems: I am not initiating variables properly, or I am not using GEKKO properly.我只能想到两个问题:我没有正确启动变量,或者我没有正确使用GEKKO。 Any ideas?有任何想法吗? Thanks!!谢谢!!

预期的模型行为

方程

import numpy as np
from gekko import GEKKO
import matplotlib.pyplot as plt

m = GEKKO(remote=False)    # create GEKKO model

#constants 3L continuous fed-batch
KdQ = 0.001        #degree of degradation of glutamine (1/h)
mG = 1.1*10**-10   #glucose maintenance coefficient (mmol/cell/hour)
YAQ = 0.90         #yield of ammonia from glutamine
YLG = 2            #yield of lactate from glucose
YXG = 2.2*10**8    #yield of cells from glucose (cells/mmol)
YXQ = 1.5*10**9    #yield of cells from glutamine (cells/mmol)
KL = 150           #lactate saturation constant (mM)
KA = 40            #ammonia saturation constant (mM)
Kdmax = 0.01       #maximum death rate (1/h)
mumax = 0.044      #maximum growth rate (1/h)
KG = 1             #glucose saturation constant (mM)
KQ = 0.22          #glutamine saturation constant (mM)
mQ = 0             #glutamine maintenance coefficient (mmol/cell/hour)
kmu = 0.01         #intrinsic death rate (1/h)
Klysis = 2*10**-2  #rate of cell lysis (1/h)
Ci_star = 100      #inhibitor saturation concentration (mM)
qi = 2.5*10**-10   #specific inhibitor production rate (1/h)

#Flow, volume and concentration
Fo = 0.001         #feed-rate (L/h)
Fi = 0.001         #feed-rate (L/h)
V = 3              #volume (L)
SG = 653           #glucose concentration in the feed (mM)
SQ = 58.8          #glutamine concentration in the feed (mM)

# create GEKKO parameter
t = np.linspace(0,120,121)
m.time = t

XT = m.Var(name='XT')            #total cell density (cells/L)
XV = m.Var(lb=0, name='XV')      #viable cell density (cells/L)
XD = m.Var(name='XD')            #dead cell density (cells/L)
G = m.Var(value = 30, name='G')  #glucose concentration (mM)
Q = m.Var(value = 4.5, name='Q') #glutamine concentration (mM)
L = m.Var(name='L')              #lactate concentration (mM)
A = m.Var(name='A')              #ammonia concentration (mM)
Ci = m.Var(name='Ci')            #inhibitor concentration (mM)
mu = m.Var(name='mu')            #growth rate (1/h)
Kd = m.Var(name='Kd')            #death rate(1/h)

# create GEEKO equations
m.Equation(XT.dt() == mu*XV - Klysis*XD - XT*Fo/V)
m.Equation(XV.dt() == (mu - Kd)*XV - XV*Fo/V)
m.Equation(XD.dt() == Kd*XV - Klysis*XD - XV*Fo/V)
m.Equation(G.dt() == (Fi/V)*SG - (Fo/V)*G + (-mu/YXG - mG)*XV)
m.Equation(Q.dt() == (Fi/V)*SQ - (Fo/V)*Q + (-mu/YXQ - mQ)*XV - KdQ*Q)
m.Equation(L.dt() == -YLG*(-mu/YXG -mG)*XV-(Fo/V)*L)
m.Equation(A.dt() == -YAQ*(-mu/YXQ - mQ)*XV +KdQ*Q-(Fo/V)*A)
m.Equation(Ci.dt() == qi*XV - (Fo/V)*Ci)
m.Equation(mu.dt() == (mumax*G*Q*(Ci_star-Ci)) / (Ci_star*(KG+G)*(KQ+Q)*(L/KL + 1)*(A/KA + 1)))
m.Equation(Kd.dt() == Kdmax*(kmu/(mu+kmu)))

# solve ODE
m.options.IMODE = 4
m.open_folder()
m.solve(display = False)

plt.plot(m.time, XV.value)

Articles that used the exact same model:使用完全相同模型的文章:

1) Master thesis using GEKKO "MODELING OF MAMMALIAN CELL CULTURE" link: 1) 硕士论文使用 GEKKO "MODELING OF MAMMALIAN CULTURE"链接:

https://search.proquest.com/openview/e4df2d115cbc48ec63235a64b352249c/1.pdf?pq-origsite=gscholar&cbl=18750&diss=y https://search.proquest.com/openview/e4df2d115cbc48ec63235a64b352249c/1.pdf?pq-origsite=gscholar&cbl=18750&diss=y

2) Original paper describing the equations: "Process Model Comparison and Transferability Across Bioreactor Scales and Modes of Operation for a Mammalian Cell Bioprocess" 2) 描述方程的原始论文:“哺乳动物细胞生物过程跨生物反应器规模和操作模式的过程模型比较和可转移性”

link: https://sci-hub.tw/10.1002/btpr.1664链接: https : //sci-hub.tw/10.1002/btpr.1664

3) Paper with a control sytem using that model: "Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller" 3) 带有使用该模型的控制系统的论文:“使用非线性模型预测控制器对补料分批哺乳动物细胞生物过程的葡萄糖浓度控制”

link: https://sci-hub.tw/https://doi.org/10.1016/j.jprocont.2014.02.007链接: https : //sci-hub.tw/https : //doi.org/10.1016/j.jprocont.2014.02.007

In the end it is not a programming problem, but a problem reading the equations and correctly translating them.归根结底,这不是编程问题,而是阅读方程并正确翻译它们的问题。

mu and Kd are not dynamical variables, they are ordinary functions of the state vector (which then only has dimension 8). muKd不是动态变量,它们是状态向量的普通函数(只有 8 维)。 For such intermediate variables Gekko has the construction function m.Intermediate对于这样的中间变量 Gekko 有构造函数m.Intermediate

mu = m.Intermediate((mumax*G*Q*(Ci_star-Ci)) / (Ci_star*(KG+G)*(KQ+Q)*(L/KL + 1)*(A/KA + 1)), name='mu') #growth rate (1/h)
Kd = m.Intermediate(Kdmax*(kmu/(mu+kmu)))    #death rate(1/h)

With this change and initial value 5e8 for XT and XV , the script gives the plots below that look about what can be found in your cited papers.通过此更改和XTXV初始值5e8 ,脚本给出了下面的图表,看看可以在您引用的论文中找到什么。

在此处输入图片说明

There are a couple issues:有几个问题:

  • the last two equations are algebraic, not differential.最后两个方程是代数的,而不是微分的。 It should be mu==... not mu.dt()==...它应该是mu==...不是mu.dt()==...
  • a few of the equations have the potential for divide by zero.一些方程有可能被零除。 Equations such as x.dt() = z/y can be replaced with y * x.dt()==z so that the equation becomes 0 * x.dt() == z if y approaches zero.诸如x.dt() = z/y方程可以用y * x.dt()==z替换,这样如果y接近零,则方程变为0 * x.dt() == z
  • some of the initial conditions aren't set so they use a default value of 0. This is likely creating a zero solution.一些初始条件未设置,因此它们使用默认值 0。这可能会创建零解决方案。

I put in some different values and used m.options.COLDSTART=2 to help it find an initial solution.我输入了一些不同的值并使用m.options.COLDSTART=2来帮助它找到初始解决方案。 I also used Intermediates to help visualize any terms that are getting big.我还使用中间体来帮助可视化任何变大的术语。 I put the cell concentrations in units of Millions of cells per liter to help with scaling.我将细胞浓度以每升数百万个细胞为单位,以帮助缩放。

结果

import numpy as np
from gekko import GEKKO
import matplotlib.pyplot as plt

m = GEKKO(remote=False)    # create GEKKO model

#constants 3L continuous fed-batch
KdQ = 0.001        #degree of degradation of glutamine (1/h)
mG = 1.1e-10   #glucose maintenance coefficient (mmol/cell/hour)
YAQ = 0.90         #yield of ammonia from glutamine
YLG = 2            #yield of lactate from glucose
YXG = 2.2e8    #yield of cells from glucose (cells/mmol)
YXQ = 1.5e9    #yield of cells from glutamine (cells/mmol)
KL = 150           #lactate saturation constant (mM)
KA = 40            #ammonia saturation constant (mM)
Kdmax = 0.01       #maximum death rate (1/h)
mumax = 0.044      #maximum growth rate (1/h)
KG = 1             #glucose saturation constant (mM)
KQ = 0.22          #glutamine saturation constant (mM)
mQ = 0             #glutamine maintenance coefficient (mmol/cell/hour)
kmu = 0.01         #intrinsic death rate (1/h)
Klysis = 2e-2  #rate of cell lysis (1/h)
Ci_star = 100      #inhibitor saturation concentration (mM)
qi = 2.5e-10   #specific inhibitor production rate (1/h)

#Flow, volume and concentration
Fo = 0.001         #feed-rate (L/h)
Fi = 0.001         #feed-rate (L/h)
V = 3              #volume (L)
SG = 653           #glucose concentration in the feed (mM)
SQ = 58.8          #glutamine concentration in the feed (mM)

# create GEKKO parameter
t = np.linspace(0,50,121)
m.time = t

XTMM = m.Var(value=1,name='XT')            #total cell density (MMcells/L)
XVMM = m.Var(value=1,lb=0, name='XV')      #viable cell density (MMcells/L)
XDMM = m.Var(value=1.0,name='XD')          #dead cell density (MMcells/L)
G = m.Var(value = 20, name='G')            #glucose concentration (mM)
Q = m.Var(value = 4.5, name='Q')           #glutamine concentration (mM)
L = m.Var(value=1,name='L')                #lactate concentration (mM)
A = m.Var(value=1.6,name='A')              #ammonia concentration (mM)
Ci = m.Var(value=0.1,name='Ci')            #inhibitor concentration (mM)
mu = m.Var(value=0.1,name='mu')            #growth rate (1/h)
Kd = m.Var(value=0.5,name='Kd')            #death rate(1/h)

# scale back to cells/L from million cells/L
XT = m.Intermediate(XTMM*1e7)
XV = m.Intermediate(XVMM*1e7)
XD = m.Intermediate(XDMM*1e7)

e1 = m.Intermediate((mu*XV - Klysis*XD - XT*Fo/V)/1e7)
e2 = m.Intermediate(((mu - Kd)*XV - XV*Fo/V)/1e7)
e3 = m.Intermediate((Kd*XV - Klysis*XD - XV*Fo/V)/1e7)
e4 = m.Intermediate((Fi/V)*SG - (Fo/V)*G + (-mu/YXG - mG)*XV)
e5 = m.Intermediate((Fi/V)*SQ - (Fo/V)*Q + (-mu/YXQ - mQ)*XV - KdQ*Q)
e6 = m.Intermediate(-YLG*(-mu/YXG -mG)*XV-(Fo/V)*L)
e7 = m.Intermediate(-YAQ*(-mu/YXQ - mQ)*XV +KdQ*Q-(Fo/V)*A)
e8 = m.Intermediate(qi*XV - (Fo/V)*Ci)
e9a = m.Intermediate((Ci_star*(KG+G)*(KQ+Q)*(L/KL + 1)*(A/KA + 1)))
e9b = m.Intermediate((mumax*G*Q*(Ci_star-Ci)))
e10a = m.Intermediate((mu+kmu))
e10b = m.Intermediate(Kdmax*kmu)

# create GEEKO equations
m.Equation(XTMM.dt() == e1)
m.Equation(XVMM.dt() == e2)
m.Equation(XDMM.dt() == e3)
m.Equation(G.dt() == e4)
m.Equation(Q.dt() == e5)
m.Equation(L.dt() == e6)
m.Equation(A.dt() == e7)
m.Equation(Ci.dt() == e8)
m.Equation(e9a * mu == e9b)
m.Equation(e10a*Kd == e10b)

# solve ODE
m.options.IMODE = 4
m.options.SOLVER = 1
m.options.NODES = 3
m.options.COLDSTART = 2
#m.open_folder()
m.solve(display=False)

plt.figure()
plt.subplot(3,1,1)
plt.plot(m.time, XV.value,label='XV')
plt.plot(m.time, XT.value,label='XT')
plt.plot(m.time, XD.value,label='XD')
plt.legend()
plt.subplot(3,1,2)
plt.plot(m.time, G.value,label='G')
plt.plot(m.time, Q.value,label='Q')
plt.plot(m.time, L.value,label='L')
plt.plot(m.time, A.value,label='A')
plt.legend()
plt.subplot(3,1,3)
plt.plot(m.time, mu.value,label='mu')
plt.plot(m.time, Kd.value,label='Kd')
plt.legend()
plt.xlabel('Time (hr)')

plt.figure()
plt.plot(m.time, e1.value,'r-.',label='eqn1')
plt.plot(m.time, e2.value,'g:',label='eqn2')
plt.plot(m.time, e3.value,'b:',label='eqn3')
plt.plot(m.time, e4.value,'b--',label='eqn4')
plt.plot(m.time, e5.value,'y:',label='eqn5')
plt.plot(m.time, e6.value,'m--',label='eqn6')
plt.plot(m.time, e7.value,'b-.',label='eqn7')
plt.plot(m.time, e8.value,'g--',label='eqn8')
plt.plot(m.time, e9a.value,'r:',label='eqn9a')
plt.plot(m.time, e9b.value,'r--',label='eqn9b')
plt.plot(m.time, e10a.value,'k:',label='eqn10a')
plt.plot(m.time, e10b.value,'k--',label='eqn10b')
plt.legend()

plt.show()

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM