简体   繁体   English

如何使用 Caret 包中的“gbm”方法生成混淆矩阵

[英]How to Produce a Confusion Matrix using the 'gbm' Method in the Caret Package

Issue:问题:

I'm a beginner at building classification models, so I am sorry if this question might sound terminologically incorrect.我是构建分类模型的初学者,所以如果这个问题在术语上听起来不正确,我很抱歉。 I will try my best.我会尽力。 I am having trouble interpreting the error messages that I am receiving when creating a confusion matrix using the e1071 package .在使用e1071 package创建混淆矩阵时,我无法解释收到的错误消息。

I have tried many solutions to fix the errors but I really can't comprehend how to move further to successfully produce a confusion matrix using the gbm method (see below) .我已经尝试了许多解决方案来修复错误,但我真的无法理解如何进一步使用gbm method成功生成混淆矩阵(见下文) I have tried my best to try and fix the error and I feel confused.我已尽力尝试修复错误,但我感到困惑。

Error: `data` and `reference` should be factors with the same levels.

This exercise is part of a university assignment and I would be really grateful if anybody can help me solve this issue and explain what these error messages mean as a learning exercise.这个练习是大学作业的一部分,如果有人能帮助我解决这个问题并解释这些错误消息作为学习练习的含义,我将不胜感激。

My data has nine continuous independent variables , and one dependent variable called 'Country'.我的数据有nine continuous independent variables和一个称为“国家”的dependent variable

Another post suggested that:
the error means that you need to give it factors as inputs (train[[predict]] > c is not a factor). Try using factor(ifelse(...), levels) instead).

I'm developing a gbm model using Caret package .我正在使用Caret package开发一个gbm模型。

#install packages
library(gbm)
library(caret)
library(e1701)

set.seed(45L)

#Produce a new version of the data frame 'Clusters_Dummy' with the rows shuffled
NewClusters=Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]

#Produce a dataframe
NewCluster<-as.data.frame(NewClusters)

#Split the training and testing data 70:30
training.parameters <- Cluster_Dummy_2$Country %>% 
createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ]
test.data <- NewClusters[-training.parameters, ]

dim(train.data)
#259  10

dim(test.data)
#108  10

#Auxiliary function for controlling model fitting
#10 fold cross validation; 10 times
fitControl <- trainControl(## 10-fold CV
                          method = "repeatedcv",
                          number = 10,
                          ## repeated ten times
                          repeats = 10,
                          classProbs = TRUE)
#Fit the model
gbmFit1 <- train(Country ~ ., data=train.data, 
                 method = "gbm", 
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE)
gbmFit1
summary(gbmFit1)

#Predict the model with the test data
pred_model_Tree1 = predict(gbmFit1, newdata = head(test.data$Country), type = "prob")
pred_model_Tree1

print(pred_model_Tree1)

Confusion Matrix混淆矩阵

#Confusion Matrix
confusionMatrix(pred_model_Tree1, test.data$Country)

#Error
Error: `data` and `reference` should be factors with the same levels.

What type of objects are pred_model_Tree1 & test.data$Country pred_model_Tree1 & test.data$Country 是什么类型的对象

typeof(pred_model_Tree1)
#list

typeof(test.data$Country)
#"integer"

#Convert both objects into factors
test.data$Country<-as.factor(test.data$Country)

#check
str(test.data)

'data.frame':   108 obs. of  10 variables:
 $ Country    : Factor w/ 3 levels "France","Holland",..: 2 1 1 2 1 2 1 1 2 2 ...

#str(pred_model_Tree1)
#data.frame':   6 obs. of  3 variables:
 #$ France     : num  0.00311 0.98187 0.98882 0.00935 0.99632 ...
 #$ Holland    : num  9.24e-01 1.41e-03 1.58e-03 4.45e-01 1.86e-05 
 #$ Spain: num  0.073 0.01672 0.0096 0.54539 0.00366 ...

  #Differences: 
    pred_model_Tree1 (three columns; 6 obs; 3 variables); 
    test.data (11 columns; 6 obs, dependent variable - 3 levels)
    Question: How to transform both objects to follow the same structure and the same levels
    
#Check the number of rows of the test.data
nrow(test.data)
#108

#Check the number of rows of the predicted output
nrow(pred_model_Tree1)
#6

#What are the levels
levels(pred_model_Tree1)
#NULL

levels(test.data$Country)
#[1] "France"      "Holland"     "Spain"

table(test.data$Country)
#France     Holland Spain 
#35         36         37 

I found a really good Stackoverflow question here to try and solve the issue and I tried to find a solution我在这里找到了一个非常好的 Stackoverflow 问题来尝试解决这个问题,我试图找到一个解决方案

#If you can't get the confusion matrix to work, break it down'
#Error: data and reference data should be factors with the same levels

#confusionMatrix(predicted, actual)
table(pred_model_Tree1) #Predicted

#       France      Holland       Spain
#1 0.003110462 9.238903e-01 0.072999195
#2 0.981868172 1.408983e-03 0.016722845
#3 0.988820237 1.575354e-03 0.009604409
#4 0.009346725 4.452638e-01 0.545389520
#5 0.996322192 1.864682e-05 0.003659161
#6 0.012668621 9.803462e-01 0.006985212

table(test.data$Country) #Actual

#France     Holland Spain 
#38         46         24 

#Great, they both have the same column headings

#Do the predicted and actual data match (are they factors)

confusionMatrix(as.factor(pred_model_Tree1), as.factor(test.data$Country))

#Error in confusionMatrix.default(as.factor(pred_model_Tree1), as.factor(test.data$Country)) : 
#The data must contain some levels that overlap the reference.
#In addition: Warning message:
#  In xtfrm.data.frame(x) : cannot xtfrm data frames

#format() treats the elements of a vector as character strings using a common format. 
pred<-format(round(predict(pred_model_Tree1, test.data)))

#Error 
Error in UseMethod("predict") : 
  no applicable method for 'predict' applied to an object of class "data.frame"

#One answer contained a custom made function
#They suggest that at least one number in the test.data that is never predicted. This is what is meant why "different number of levels". 

table(factor(pred_model_Tree1, levels=min(test.data):max(test.data)), 
      factor(test.data$Country, levels=min(test.data):max(test.data)))

#Error
Error in FUN(X[[i]], ...) : 
  only defined on a data frame with all numeric-alike variables

#Lastly, I found a function on StackOverflow that can be used to fix the unequal levels problem

# Create a confusion matrix from the given outcomes, whose rows correspond
# to the actual and the columns to the predicated classes.
createConfusionMatrix <- function(act, pred) {
  # You've mentioned that neither actual nor predicted may give a complete
  # picture of the available classes, hence:
  numClasses <- max(act, pred)
  # Sort predicted and actual as it simplifies what's next. You can make this
  # faster by storing `order(act)` in a temporary variable.
  pred <- pred[order(act)]
  act  <- act[order(act)]
  sapply(split(pred, act), tabulate, nbins=numClasses)
}

act<-pred_model_Tree1
pred<-test.data$Country

print(createConfusionMatrix(act, pred))

#Error
Error in FUN(X[[i]], ...) : 
  only defined on a data frame with all numeric-alike variables

Data数据

 structure(list(Low.Freq = c(435L, 94103292L, 1L, 2688L, 8471L, 
28818L, 654755585L, 468628164L, 342491L, 2288474L, 3915L, 411L, 
267864894L, 3312618L, 5383L, 8989443L, 1894L, 534981L, 9544861L, 
3437614L, 475386L, 7550764L, 48744L, 2317845L, 5126197L, 2445L, 
8L, 557450L, 450259742L, 21006647L, 9L, 7234027L, 59L, 9L, 605L, 
9199L, 3022L, 30218156L, 46423L, 38L, 88L, 396396244L, 28934316L, 
7723L, 95688045L, 679354L, 716352L, 76289L, 332826763L, 6L, 90975L, 
83103577L, 9529L, 229093L, 42810L, 5L, 18175302L, 1443751L, 5831L, 
8303661L, 86L, 778L, 23947L, 8L, 9829740L, 2075838L, 7434328L, 
82174987L, 2L, 94037071L, 9638653L, 5L, 3L, 65972L, 0L, 936779338L, 
4885076L, 745L, 8L, 56456L, 125140L, 73043989L, 516476L, 7L, 
4440739L, 612L, 3966L, 8L, 9255L, 84127L, 96218L, 5690L, 56L, 
3561L, 78738L, 1803363L, 809369L, 7131L, 0L), High.Freq = c(6071L, 
3210L, 6L, 7306092L, 6919054L, 666399L, 78L, 523880161L, 4700783L, 
4173830L, 30L, 811L, 341014L, 780L, 44749L, 91L, 201620707L, 
74L, 1L, 65422L, 595L, 89093186L, 946520L, 6940919L, 655350L, 
4L, 6L, 618L, 2006697L, 889L, 1398L, 28769L, 90519642L, 984L, 
0L, 296209525L, 487088392L, 5L, 894L, 529L, 5L, 99106L, 2L, 926017L, 
9078L, 1L, 21L, 88601017L, 575770L, 48L, 8431L, 194L, 62324996L, 
5L, 81L, 40634727L, 806901520L, 6818173L, 3501L, 91780L, 36106039L, 
5834347L, 58388837L, 34L, 3280L, 6507606L, 19L, 402L, 584L, 76L, 
4078684L, 199L, 6881L, 92251L, 81715L, 40L, 327L, 57764L, 97668898L, 
2676483L, 76L, 4694L, 817120L, 51L, 116712L, 666L, 3L, 42841L, 
9724L, 21L, 4L, 359L, 2604L, 22L, 30490L, 5640L, 34L, 51923625L, 
35544L), Peak.Freq = c(87005561L, 9102L, 994839015L, 42745869L, 
32840L, 62737133L, 2722L, 24L, 67404881L, 999242982L, 3048L, 
85315406L, 703037627L, 331264L, 8403609L, 3934064L, 50578953L, 
370110665L, 3414L, 12657L, 40L, 432L, 7707L, 214L, 68588962L, 
69467L, 75L, 500297L, 704L, 1L, 102659072L, 60896923L, 4481230L, 
94124925L, 60164619L, 447L, 580L, 8L, 172L, 9478521L, 20L, 53L, 
3072127L, 2160L, 27301893L, 8L, 4263L, 508L, 712409L, 50677L, 
522433683L, 112844L, 193385L, 458269L, 93578705L, 22093131L, 
6L, 9L, 1690461L, 0L, 4L, 652847L, 44767L, 21408L, 5384L, 304L, 
721L, 651147L, 2426L, 586L, 498289375L, 945L, 6L, 816L, 46207L, 
39135L, 6621028L, 66905L, 26905085L, 4098L, 0L, 14L, 88L, 530L, 
97809006L, 90L, 6L, 260792844L, 9L, 833205723L, 99467321L, 5L, 
8455640L, 54090L, 2L, 309L, 299161148L, 4952L, 454824L), Delta.Freq = c(5L, 
78L, 88553L, 794L, 5L, 3859122L, 782L, 36L, 8756801L, 243169338L, 
817789L, 8792384L, 7431L, 626921743L, 9206L, 95789L, 7916L, 8143453L, 
6L, 4L, 6363L, 181125L, 259618L, 6751L, 33L, 37960L, 0L, 2L, 
599582228L, 565585L, 19L, 48L, 269450424L, 70676581L, 7830566L, 
4L, 86484313L, 21L, 90899794L, 2L, 72356L, 574280L, 869544L, 
73418L, 6468164L, 2259L, 5938505L, 31329L, 1249L, 354L, 8817L, 
3L, 2568L, 82809L, 29836269L, 5230L, 37L, 33752014L, 79307L, 
1736L, 8522076L, 40L, 2289135L, 862L, 801448L, 8026L, 5L, 15L, 
4393771L, 405914L, 71098L, 950288L, 8319L, 1396973L, 832L, 70L, 
1746L, 61907L, 8709547L, 300750537L, 45862L, 91417085L, 79892L, 
47765L, 5477L, 18L, 4186L, 2860L, 754038591L, 375L, 53809223L, 
72L, 136L, 509L, 232325L, 13128104L, 1692L, 8581L, 23L), Delta.Time = c(1361082L, 
7926L, 499L, 5004L, 3494530L, 213L, 64551179L, 70L, 797L, 5L, 
72588L, 86976L, 5163L, 635080L, 3L, 91L, 919806257L, 81443L, 
3135427L, 4410972L, 5810L, 8L, 46603718L, 422L, 1083626L, 48L, 
15699890L, 7L, 90167635L, 446459879L, 2332071L, 761660L, 49218442L, 
381L, 46L, 493197L, 46L, 798597155L, 45342274L, 6265842L, 6L, 
3445819L, 351L, 1761227L, 214L, 959L, 908996387L, 6L, 3855L, 
9096604L, 152664L, 7970052L, 32366926L, 31L, 5201618L, 114L, 
7806411L, 70L, 239L, 5065L, 2L, 1L, 14472831L, 122042249L, 8L, 
495604L, 29L, 8965478L, 2875L, 959L, 39L, 9L, 690L, 933626665L, 
85294L, 580093L, 95934L, 982058L, 65244056L, 137508L, 29L, 7621L, 
7527L, 72L, 2L, 315L, 6L, 2413L, 8625150L, 51298109L, 851L, 890460L, 
160736L, 6L, 850842734L, 2L, 7L, 76969113L, 190536L), Peak.Time = c(1465265L, 
452894L, 545076172L, 8226275L, 5040875L, 700530L, 1L, 3639L, 
20141L, 71712131L, 686L, 923L, 770569738L, 69961L, 737458636L, 
122403L, 199502046L, 6108L, 907L, 108078263L, 7817L, 4L, 6L, 
69L, 721L, 786353L, 87486L, 1563L, 876L, 47599535L, 79295722L, 
53L, 7378L, 591L, 6607935L, 954L, 6295L, 75514344L, 5742050L, 
25647276L, 449L, 328566184L, 4L, 2L, 2703L, 21367543L, 63429043L, 
708L, 782L, 909820L, 478L, 50L, 922L, 579882L, 7850L, 534L, 2157492L, 
96L, 6L, 716L, 5L, 653290336L, 447854237L, 2L, 31972263L, 645L, 
7L, 609909L, 4054695L, 455631L, 4919894L, 9L, 72713L, 9997L, 
84090765L, 89742L, 5L, 5028L, 4126L, 23091L, 81L, 239635020L, 
3576L, 898597785L, 6822L, 3798L, 201999L, 19624L, 20432923L, 
18944093L, 930720236L, 1492302L, 300122L, 143633L, 5152743L, 
417344L, 813L, 55792L, 78L), Center_Freq = c(61907L, 8709547L, 
300750537L, 45862L, 91417085L, 79892L, 47765L, 5477L, 18L, 4186L, 
2860L, 754038591L, 375L, 53809223L, 72L, 136L, 4700783L, 4173830L, 
30L, 811L, 341014L, 780L, 44749L, 91L, 201620707L, 74L, 1L, 65422L, 
595L, 89093186L, 946520L, 6940919L, 48744L, 2317845L, 5126197L, 
2445L, 8L, 557450L, 450259742L, 21006647L, 9L, 7234027L, 59L, 
9L, 651547554L, 45554L, 38493L, 91055218L, 38L, 1116474L, 2295482L, 
3001L, 9L, 3270L, 141L, 53644L, 667983L, 565598L, 84L, 971L, 
555498297L, 60431L, 6597L, 856943893L, 607815536L, 4406L, 79L, 
4885076L, 745L, 8L, 56456L, 125140L, 73043989L, 516476L, 7L, 
4440739L, 754038591L, 375L, 53809223L, 72L, 136L, 509L, 232325L, 
13128104L, 1692L, 8581L, 23L, 5874213L, 4550L, 644668065L, 3712371L, 
5928L, 8833L, 7L, 2186023L, 61627221L, 37297L, 716427989L, 21387L
), Start.Freq = c(426355L, 22073538L, 680374L, 41771L, 54L, 6762844L, 
599171L, 108L, 257451851L, 438814L, 343045L, 4702L, 967787L, 
1937L, 18L, 89301735L, 366L, 90L, 954L, 7337732L, 70891703L, 
4139L, 10397931L, 940000382L, 7L, 38376L, 878528819L, 6287L, 
738366L, 31L, 47L, 5L, 6L, 77848L, 2366508L, 45L, 3665842L, 7252260L, 
6L, 61L, 3247L, 448348L, 1L, 705132L, 144L, 7423637L, 2L, 497L, 
844927639L, 78978L, 914L, 131L, 7089563L, 927L, 9595581L, 2774463L, 
1651L, 73509280L, 7L, 35L, 18L, 96L, 1L, 92545512L, 27354947L, 
7556L, 65019L, 7480L, 71835L, 8249L, 64792L, 71537L, 349389666L, 
280244484L, 82L, 6L, 40L, 353872L, 0L, 103L, 1255L, 4752L, 29L, 
76L, 81185L, 14L, 9L, 470775630L, 818361265L, 57947209L, 44L, 
24L, 41295L, 4L, 261449L, 9931404L, 773556640L, 930717L, 65007421L
), End.Freq = c(71000996L, 11613579L, 71377155L, 1942738L, 8760748L, 
79L, 455L, 374L, 8L, 5L, 2266932L, 597833L, 155488L, 3020L, 4L, 
554L, 4L, 16472L, 1945649L, 668181101L, 649780L, 22394365L, 93060602L, 
172146L, 20472L, 23558847L, 190513L, 22759044L, 44L, 78450L, 
205621181L, 218L, 69916344L, 23884L, 66L, 312148L, 7710564L, 
4L, 422L, 744572L, 651547554L, 45554L, 38493L, 91055218L, 38L, 
1116474L, 2295482L, 3001L, 9L, 3270L, 141L, 55595L, 38451L, 8660867L, 
14L, 96L, 345L, 6L, 44L, 8235824L, 910517L, 1424326L, 87102566L, 
53644L, 667983L, 565598L, 84L, 971L, 555498297L, 60431L, 6597L, 
856943893L, 607815536L, 4406L, 79L, 7L, 28978746L, 7537295L, 
6L, 633L, 345860066L, 802L, 1035131L, 602L, 2740L, 8065L, 61370968L, 
429953765L, 981507L, 8105L, 343787257L, 44782L, 64184L, 12981359L, 
123367978L, 818775L, 123745614L, 25345654L, 3L), Country = c("Holland", 
"Holland", "Holland", "Holland", "Holland", "Holland", "Spain", 
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Spain", "Spain", "Spain", "Spain", "Holland", "Holland", "Holland", 
"Holland", "Holland", "Holland", "France", "France", "France", 
"France", "France", "France", "France", "France", "France", "France", 
"France", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Spain", "Spain", "France", "France", "France", "France", "Holland", 
"Holland", "Holland", "Holland", "Holland", "Holland", "Holland", 
"Holland", "Holland", "Holland", "Holland", "Holland", "Holland", 
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Holland", "Holland", "Holland", "Holland", "France", "France", 
"France", "France", "France", "France", "France", "Spain", "Spain", 
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Spain", "Spain", "France", "France", "France")), row.names = c(NA, 
99L), class = "data.frame")

Thanks for including all the required information;感谢您提供所有必需的信息; I believe this is the solution to your problem:我相信这是您问题的解决方案:

library(magrittr)
library(gbm)
#> Loaded gbm 2.1.8
library(caret)
#> Loading required package: ggplot2
#> Loading required package: lattice
library(e1071)

set.seed(45L)

# Load in your example data to an object ("data")
#Produce a new version of the data frame 'Clusters_Dummy' with the rows shuffled
Cluster_Dummy_2 <- data
NewClusters <- Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]

NewCluster<-as.data.frame(NewClusters)

training.parameters <- Cluster_Dummy_2$Country %>% 
  createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ]
test.data <- NewClusters[-training.parameters, ]

dim(train.data)
#> [1] 70 11
#259  10

dim(test.data)
#> [1] 29 11
#108  10

#Auxiliary function for controlling model fitting
#10 fold cross validation; 10 times
fitControl <- trainControl(## 10-fold CV
  method = "repeatedcv",
  number = 10,
  ## repeated ten times
  repeats = 10,
  classProbs = TRUE)
#Fit the model
gbmFit1 <- train(Country ~ ., data=train.data, 
                 method = "gbm", 
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE)
gbmFit1
#> Stochastic Gradient Boosting 
#> 
#> 70 samples
#> 10 predictors
#>  2 classes: 'France', 'Holland' 
#> 
#> No pre-processing
#> Resampling: Cross-Validated (10 fold, repeated 10 times) 
#> Summary of sample sizes: 64, 64, 63, 63, 63, 62, ... 
#> Resampling results across tuning parameters:
#> 
#>   interaction.depth  n.trees  Accuracy   Kappa    
#>   1                   50      0.7397619  0.4810245
#>   1                  100      0.7916667  0.5816756
#>   1                  150      0.8204167  0.6392434
#>   2                   50      0.7396429  0.4813670
#>   2                  100      0.7943452  0.5901254
#>   2                  150      0.8380357  0.6768166
#>   3                   50      0.7361905  0.4711780
#>   3                  100      0.7966071  0.5897921
#>   3                  150      0.8356548  0.6694202
#> 
#> Tuning parameter 'shrinkage' was held constant at a value of 0.1
#> 
#> Tuning parameter 'n.minobsinnode' was held constant at a value of 10
#> Accuracy was used to select the optimal model using the largest value.
#> The final values used for the model were n.trees = 150, interaction.depth =
#>  2, shrinkage = 0.1 and n.minobsinnode = 10.
summary(gbmFit1)

#>                     var   rel.inf
#> ID                   ID 66.517974
#> Center_Freq Center_Freq  6.624256
#> Start.Freq   Start.Freq  5.545827
#> Delta.Time   Delta.Time  5.033223
#> Peak.Time     Peak.Time  4.951384
#> End.Freq       End.Freq  3.211461
#> Delta.Freq   Delta.Freq  2.352933
#> Low.Freq       Low.Freq  2.207371
#> High.Freq     High.Freq  1.951895
#> Peak.Freq     Peak.Freq  1.603675

#Predict the model with the test data
pred_model_Tree1 <- predict(object = gbmFit1, newdata = test.data, type = "prob")
pred_model_Tree1
#>         France     Holland
#> 1  0.919393487 0.080606513
#> 2  0.095638010 0.904361990
#> 3  0.019038102 0.980961898
#> 4  0.045807668 0.954192332
#> 5  0.157809127 0.842190873
#> 6  0.987391435 0.012608565
#> 7  0.011436393 0.988563607
#> 8  0.032262438 0.967737562
#> 9  0.151393564 0.848606436
#> 10 0.993447390 0.006552610
#> 11 0.020833439 0.979166561
#> 12 0.993910239 0.006089761
#> 13 0.009170816 0.990829184
#> 14 0.010519644 0.989480356
#> 15 0.995338954 0.004661046
#> 16 0.994153479 0.005846521
#> 17 0.998099611 0.001900389
#> 18 0.056571139 0.943428861
#> 19 0.801327096 0.198672904
#> 20 0.192220458 0.807779542
#> 21 0.899189477 0.100810523
#> 22 0.766542297 0.233457703
#> 23 0.940046468 0.059953532
#> 24 0.069087397 0.930912603
#> 25 0.916674076 0.083325924
#> 26 0.023676968 0.976323032
#> 27 0.996824979 0.003175021
#> 28 0.996068088 0.003931912
#> 29 0.096807861 0.903192139

# Evaluate each prediction, i.e. if the predicted likelihood that the country is France is '0.9'
# and the likelihood it's Holland is '0.1', then the prediction is "France"
pred_model_Tree1$evaluation <- ifelse(pred_model_Tree1$France >= 0.5, "France", "Holland")

# Now you can print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_model_Tree1$evaluation, levels = unique(test.data$Country)),
                factor(test.data$Country, levels = unique(test.data$Country)))
#> Confusion Matrix and Statistics
#> 
#>           Reference
#> Prediction France Holland
#>    France      13       1
#>    Holland      0      15
#>                                           
#>                Accuracy : 0.9655          
#>                  95% CI : (0.8224, 0.9991)
#>     No Information Rate : 0.5517          
#>     P-Value [Acc > NIR] : 7.947e-07       
#>                                           
#>                   Kappa : 0.9308          
#>                                           
#>  Mcnemar's Test P-Value : 1               
#>                                           
#>             Sensitivity : 1.0000          
#>             Specificity : 0.9375          
#>          Pos Pred Value : 0.9286          
#>          Neg Pred Value : 1.0000          
#>              Prevalence : 0.4483          
#>          Detection Rate : 0.4483          
#>    Detection Prevalence : 0.4828          
#>       Balanced Accuracy : 0.9688          
#>                                           
#>        'Positive' Class : France          
#> 

Created on 2022-06-02 by the reprex package (v2.0.1)reprex 包创建于 2022-06-02 (v2.0.1)


Edit编辑

Something seems wrong - perhaps you want to remove the IDs before you train/test the model?似乎有问题 - 也许您想在训练/测试模型之前删除 ID? (Maybe they weren't randomly assigned?) Eg (也许他们不是随机分配的?)例如

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(gbm)
#> Loaded gbm 2.1.8
library(caret)
#> Loading required package: ggplot2
#> Loading required package: lattice
library(e1071)

set.seed(45L)

#Produce a new version of the data frame 'Clusters_Dummy' with the rows shuffled
Cluster_Dummy_2 <- data
NewClusters <- Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]

NewCluster<-as.data.frame(NewClusters)

training.parameters <- Cluster_Dummy_2$Country %>% 
  createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ] %>%
  select(-ID)
test.data <- NewClusters[-training.parameters, ] %>%
  select(-ID)

dim(train.data)
#> [1] 70 10

dim(test.data)
#> [1] 29 10

#Auxiliary function for controlling model fitting
#10 fold cross validation; 10 times
fitControl <- trainControl(## 10-fold CV
  method = "repeatedcv",
  number = 10,
  ## repeated ten times
  repeats = 10,
  classProbs = TRUE)
#Fit the model
gbmFit1 <- train(Country ~ ., data=train.data, 
                 method = "gbm", 
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE)
gbmFit1
#> Stochastic Gradient Boosting 
#> 
#> 70 samples
#>  9 predictor
#>  2 classes: 'France', 'Holland' 
#> 
#> No pre-processing
#> Resampling: Cross-Validated (10 fold, repeated 10 times) 
#> Summary of sample sizes: 64, 64, 63, 63, 63, 62, ... 
#> Resampling results across tuning parameters:
#> 
#>   interaction.depth  n.trees  Accuracy   Kappa     
#>   1                   50      0.5515476  0.08773090
#>   1                  100      0.5908929  0.17272118
#>   1                  150      0.5958333  0.18280502
#>   2                   50      0.5386905  0.06596478
#>   2                  100      0.5767262  0.13757567
#>   2                  150      0.5785119  0.14935661
#>   3                   50      0.5575000  0.09991455
#>   3                  100      0.5585119  0.10906906
#>   3                  150      0.5780952  0.14820067
#> 
#> Tuning parameter 'shrinkage' was held constant at a value of 0.1
#> 
#> Tuning parameter 'n.minobsinnode' was held constant at a value of 10
#> Accuracy was used to select the optimal model using the largest value.
#> The final values used for the model were n.trees = 150, interaction.depth =
#>  1, shrinkage = 0.1 and n.minobsinnode = 10.
summary(gbmFit1)

#>                     var   rel.inf
#> Center_Freq Center_Freq 14.094306
#> High.Freq     High.Freq 14.060959
#> Peak.Time     Peak.Time 13.503953
#> Peak.Freq     Peak.Freq 11.358891
#> Delta.Time   Delta.Time  9.964882
#> Low.Freq       Low.Freq  9.610686
#> End.Freq       End.Freq  9.308919
#> Delta.Freq   Delta.Freq  9.097253
#> Start.Freq   Start.Freq  9.000152

#Predict the model with the test data
pred_model_Tree1 <- predict(object = gbmFit1, newdata = test.data, type = "prob")
pred_model_Tree1
#>        France    Holland
#> 1  0.75514031 0.24485969
#> 2  0.44409692 0.55590308
#> 3  0.15027904 0.84972096
#> 4  0.49861536 0.50138464
#> 5  0.95406713 0.04593287
#> 6  0.82122854 0.17877146
#> 7  0.27931450 0.72068550
#> 8  0.50113421 0.49886579
#> 9  0.61912973 0.38087027
#> 10 0.91005442 0.08994558
#> 11 0.42625105 0.57374895
#> 12 0.27339404 0.72660596
#> 13 0.14520192 0.85479808
#> 14 0.16607144 0.83392856
#> 15 0.97198722 0.02801278
#> 16 0.88614818 0.11385182
#> 17 0.65561219 0.34438781
#> 18 0.86793709 0.13206291
#> 19 0.28583233 0.71416767
#> 20 0.97002073 0.02997927
#> 21 0.74408374 0.25591626
#> 22 0.28408111 0.71591889
#> 23 0.07257257 0.92742743
#> 24 0.22724577 0.77275423
#> 25 0.32581206 0.67418794
#> 26 0.59713799 0.40286201
#> 27 0.75814205 0.24185795
#> 28 0.94018097 0.05981903
#> 29 0.51155700 0.48844300

# Evaluate each prediction, i.e. if the predicted likelihood that the country is France is '0.9'
# and the likelihood it's Holland is '0.1', then the prediction is "France"
pred_model_Tree1$evaluation <- ifelse(pred_model_Tree1$France >= 0.5, "France", "Holland")

# Now you can print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_model_Tree1$evaluation, levels = unique(test.data$Country)),
                factor(test.data$Country, levels = unique(test.data$Country)))
#> Confusion Matrix and Statistics
#> 
#>           Reference
#> Prediction France Holland
#>    France       9       7
#>    Holland      4       9
#>                                           
#>                Accuracy : 0.6207          
#>                  95% CI : (0.4226, 0.7931)
#>     No Information Rate : 0.5517          
#>     P-Value [Acc > NIR] : 0.2897          
#>                                           
#>                   Kappa : 0.2494          
#>                                           
#>  Mcnemar's Test P-Value : 0.5465          
#>                                           
#>             Sensitivity : 0.6923          
#>             Specificity : 0.5625          
#>          Pos Pred Value : 0.5625          
#>          Neg Pred Value : 0.6923          
#>              Prevalence : 0.4483          
#>          Detection Rate : 0.3103          
#>    Detection Prevalence : 0.5517          
#>       Balanced Accuracy : 0.6274          
#>                                           
#>        'Positive' Class : France          
#> 

Created on 2022-06-02 by the reprex package (v2.0.1)reprex 包创建于 2022-06-02 (v2.0.1)


Edit 2编辑 2

For multi-class classification (3 classes):对于多类分类(3类):

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(gbm)
#> Loaded gbm 2.1.8
library(caret)
#> Loading required package: ggplot2
#> Loading required package: lattice
library(e1071)

set.seed(45L)

#Produce a new version of the data frame 'Clusters_Dummy' with the rows shuffled
Cluster_Dummy_2 <- data_updated

NewClusters <- Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]

NewCluster <- as.data.frame(NewClusters)

training.parameters <- Cluster_Dummy_2$Country %>% 
  createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ]
test.data <- NewClusters[-training.parameters, ]

dim(train.data)
#> [1] 71 10

dim(test.data)
#> [1] 28 10

#Auxiliary function for controlling model fitting
#10 fold cross validation; 10 times
fitControl <- trainControl(## 10-fold CV
  method = "repeatedcv",
  number = 10,
  ## repeated ten times
  repeats = 10,
  classProbs = TRUE)
#Fit the model
gbmFit1 <- train(Country ~ ., data=train.data, 
                 method = "gbm", 
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE)
gbmFit1
#> Stochastic Gradient Boosting 
#> 
#> 71 samples
#>  9 predictor
#>  3 classes: 'France', 'Holland', 'Spain' 
#> 
#> No pre-processing
#> Resampling: Cross-Validated (10 fold, repeated 10 times) 
#> Summary of sample sizes: 63, 64, 64, 63, 63, 63, ... 
#> Resampling results across tuning parameters:
#> 
#>   interaction.depth  n.trees  Accuracy   Kappa     
#>   1                   50      0.4165476  0.07310546
#>   1                  100      0.4264683  0.09363788
#>   1                  150      0.4164683  0.08078702
#>   2                   50      0.3894048  0.03705497
#>   2                  100      0.4032341  0.06489744
#>   2                  150      0.4075794  0.06765817
#>   3                   50      0.4032341  0.05972739
#>   3                  100      0.3906944  0.04364377
#>   3                  150      0.4236905  0.10068155
#> 
#> Tuning parameter 'shrinkage' was held constant at a value of 0.1
#> 
#> Tuning parameter 'n.minobsinnode' was held constant at a value of 10
#> Accuracy was used to select the optimal model using the largest value.
#> The final values used for the model were n.trees = 100, interaction.depth =
#>  1, shrinkage = 0.1 and n.minobsinnode = 10.
summary(gbmFit1)

#>                     var   rel.inf
#> Peak.Time     Peak.Time 16.211328
#> End.Freq       End.Freq 15.001295
#> Center_Freq Center_Freq 12.583477
#> Delta.Freq   Delta.Freq 11.236692
#> Start.Freq   Start.Freq 10.692191
#> Delta.Time   Delta.Time  9.224466
#> Peak.Freq     Peak.Freq  8.772731
#> Low.Freq       Low.Freq  8.674891
#> High.Freq     High.Freq  7.602928

#Predict the model with the test data
pred_model_Tree1 <- predict(object = gbmFit1, newdata = test.data, type = "prob")
pred_model_Tree1
#>        France    Holland      Spain
#> 1  0.15839683 0.11884456 0.72275861
#> 2  0.31551164 0.62037910 0.06410925
#> 3  0.06056686 0.03289397 0.90653917
#> 4  0.22705213 0.03439780 0.73855007
#> 5  0.05455049 0.02259610 0.92285341
#> 6  0.34187929 0.25613079 0.40198992
#> 7  0.12857217 0.39860882 0.47281901
#> 8  0.08617855 0.09096950 0.82285196
#> 9  0.22635900 0.62549636 0.14814464
#> 10 0.20887256 0.64739917 0.14372826
#> 11 0.03588915 0.74148076 0.22263010
#> 12 0.03083337 0.48043152 0.48873511
#> 13 0.44698228 0.07630407 0.47671365
#> 14 0.12247065 0.01864920 0.85888015
#> 15 0.03022037 0.08301324 0.88676639
#> 16 0.18190023 0.50467449 0.31342527
#> 17 0.10173416 0.11619956 0.78206628
#> 18 0.29744577 0.31149440 0.39105983
#> 19 0.08555810 0.83492846 0.07951344
#> 20 0.67158503 0.12913684 0.19927813
#> 21 0.33985892 0.30094634 0.35919474
#> 22 0.41752286 0.43288825 0.14958889
#> 23 0.10014057 0.85848587 0.04137356
#> 24 0.02483037 0.57939110 0.39577853
#> 25 0.20376019 0.16867259 0.62756722
#> 26 0.05082254 0.11736656 0.83181090
#> 27 0.02621289 0.74597052 0.22781659
#> 28 0.37202204 0.48168272 0.14629524

# Select the most likely country (i.e. the highest prob)
pred_model_Tree1$evaluation <- factor(max.col(pred_model_Tree1[,1:3]), levels=1:3, labels = c("France", "Holland", "Spain"))

# Print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_model_Tree1$evaluation, levels = unique(test.data$Country)),
                factor(test.data$Country, levels = unique(test.data$Country)))
#> Confusion Matrix and Statistics
#> 
#>           Reference
#> Prediction Spain France Holland
#>    Spain      10      4       2
#>    France      0      0       1
#>    Holland     4      5       2
#> 
#> Overall Statistics
#>                                           
#>                Accuracy : 0.4286          
#>                  95% CI : (0.2446, 0.6282)
#>     No Information Rate : 0.5             
#>     P-Value [Acc > NIR] : 0.8275          
#>                                           
#>                   Kappa : 0.0968          
#>                                           
#>  Mcnemar's Test P-Value : 0.0620          
#> 
#> Statistics by Class:
#> 
#>                      Class: Spain Class: France Class: Holland
#> Sensitivity                0.7143       0.00000        0.40000
#> Specificity                0.5714       0.94737        0.60870
#> Pos Pred Value             0.6250       0.00000        0.18182
#> Neg Pred Value             0.6667       0.66667        0.82353
#> Prevalence                 0.5000       0.32143        0.17857
#> Detection Rate             0.3571       0.00000        0.07143
#> Detection Prevalence       0.5714       0.03571        0.39286
#> Balanced Accuracy          0.6429       0.47368        0.50435

#########
library(tidyverse)

Created on 2022-06-03 by the reprex package (v2.0.1)reprex 包于 2022-06-03 创建 (v2.0.1)

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM