简体   繁体   English

如何在stringdist中使用grabl function为多个output向量创建循环

[英]how to create loop for multiple output vectors with grabl function in stringdist

I'm trying to create a loop for the grabl function in stringdist that repeats the followings steps:我正在尝试为 stringdist 中的grabl function 创建一个循环,该循环重复以下步骤:

  • pick a string pattern from a vector and insert as p_i从向量中选择一个字符串模式并作为 p_i 插入
  • match with strings in table x匹配表 x 中的字符串
  • create output vector vec_i创建 output 向量 vec_i
  • repeat for all i = 1, ..., n重复所有 i = 1, ..., n

so that, in the end, I yield n output vectors这样,最后,我产生了 n 个 output 向量

grabl(x, pattern, maxDist = )

#my x is a column of a data frame with variable number of rows
> print(year2002$References[1:3])
[1] "Angelini, S., Moreno, R., Gouffi, K., Santini, C.-L., Yamagishi, A., Berenguer, J., Wu, L.-F., Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli (2001) FEBS Lett., 506, pp. 103-107; Bernhard, M., Friedrich, B., Siddiqui, R.A., Ralstonia eutropha TF93 is blocked in tat-mediated protein export (2000) J. Bacteriol., 182, pp. 581-588; Blaudeck, N., Sprenger, G.A., Freudl, R., Wiegert, T., Specificity of signal peptide recognition in tat-dependent bacterial protein translocation (2001) J. Bacteriol., 183, pp. 604-610; Bogsch, E., Sargent, F., Stanley, N.R., Berks, B.C., Robinson, C., Palmer, T., An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria (1998) J. Biol. Chem., 273, pp. 18003-18006; Chanal, A., Santini, C.-L., Wu, L.-F., Potential receptor function of three homologous components, TatA, TatB and TatE, of the twin-arginine signal sequence-dependent metalloenzyme translocation pathway in Escherichia coli (1998) Mol. Microbiol., 30, pp. 674-676; Cristobal, S., De Gier, J.-W., Nielsen, H., Von Heijne, G., Competition between Sec- and TAT-dependent protein translocation in Escherichia coli (1999) EMBO J., 18, pp. 2982-2990; Dion, M., Fourage, L., Hallet, J.N., Colas, B., Cloning and expression of a beta-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme (1999) Glycoconj. J., 16, pp. 27-37; Guzman, L.-M., Belin, D., Carson, M.J., Beckwith, J., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter (1995) J. Bacteriol., 177, pp. 4121-4130; Halbig, D., Wiegert, T., Blaudeck, N., Freudl, R., Sprenger, G.A., The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding (1999) Eur. J. Biochem., 263, pp. 543-551; Heikkila, M.P., Honisch, U., Wunsch, P., Zumft, W.G., Role of the Tat transport system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis in Pseudomonas stutzeri (2001) J. Bacteriol., 183, pp. 1663-1671; Ito, K., Akiyama, Y., Yura, T., Shiba, K., Diverse effects of the MalE-LacZ hybrid protein on Escherichia coli cell physiology (1986) J. Bacteriol., 167, pp. 201-204; Jongbloed, J.D., Martin, U., Antelmann, H., Hecker, M., Tjalsma, H., Venema, G., Bron, S., Muller, J., TatC is a specificity determinant for protein secretion via the twin- arginine translocation pathway (2000) J. Biol. Chem., 275, pp. 41350-41357; Kiino, D.R., Phillips, G.J., Silhavy, T.J., Increased expression of the bifunctional protein PrlF suppresses overproduction lethality associated with exported beta-galactosidase hybrid proteins in Escherichia coli (1990) J. Bacteriol., 172, pp. 185-192; Manoil, C., Analysis of protein localization by use of gene fusions with complementary properties (1990) J. Bacteriol., 172, pp. 1035-1042; Manoil, C., Bailey, J., A simple screen for permissive sites in proteins: Analysis of Escherichia coli lac permease (1997) J. Mol. Biol., 267, pp. 250-263; Miller, J.H., (1972) Experiments in Molecular Genetics, , Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; Nelson, B.D., Traxler, B., Exploring the role of integral membrane proteins in ATP-binding cassette transporters: Analysis of a collection of MalG insertion mutants (1998) J. Bacteriol., 180, pp. 2507-2514; Pugsley, A.P., The complete general secretory pathway in gram-negative bacteria (1993) Microbiol. Rev., 57, pp. 50-108; Rodrigue, A., Chanal, A., Beck, K., Muller, M., Wu, L., Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway (1999) J. Biol. Chem., 274, pp. 13223-13228; Sanders, C., Wethkamp, N., Lill, H., Transport of cytochrome c derivatives by the bacterial Tat protein translocation system (2001) Mol. Microbiol., 41, pp. 241-246; Santini, C.-L., Bernadac, A., Zhang, M., Chanal, A., Ize, B., Blanco, C., Wu, L.-F., Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock (2001) J. Biol. Chem., 276, pp. 8159-8164; Santini, C.L., Ize, B., Chanal, A., Müller, M., Giordano, G., Wu, L.-F., A novel Sec-independent periplasmic protein translocation pathway in Escherichia coli (1998) EMBO J., 17, pp. 101-112; Sargent, F., Bogsch, E.G., Stanley, N.R., Wexler, M., Robinson, C., Berks, B.C., Palmer, T., Overlapping functions of components of a bacterial Sec-independent protein export pathway (1998) EMBO J., 17, pp. 3640-3650; Sargent, F., Stanley, N.R., Berks, B.C., Palmer, T., Sec-independent protein translocation in Escherichia coli: A distinct and pivotal role for the TatB protein (1999) J. Biol. Chem., 274, pp. 36073-36082; Schaerlaekens, K., Schierova, M., Lammertyn, E., Geukens, N., Anne, J., Van Mellaert, L., Twin-arginine translocation pathway in Streptomyces lividans (2001) J. Bacteriol., 183, pp. 6727-6732; Schatz, G., Dobberstein, B., Common principles of protein translocation across membranes (1996) Science, 271, pp. 1519-1526; Settles, A.M., Yonetani, A., Baron, A., Bush, D.R., Cline, K., Martienssen, R., Sec-independent protein translocation by the maize Hcf106 protein (1997) Science, 278, pp. 1467-1470; Snyder, W.B., Silhavy, T.J., Beta-galactosidase is inactivated by intermolecular disulfide bonds and is toxic when secreted to the periplasm of Escherichia coli (1995) J. Bacteriol., 177, pp. 953-963; Stanley, N.R., Findlay, K., Berks, B.C., Palmer, T., Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope (2001) J. Bacteriol., 183, pp. 139-144; Stanley, N.R., Palmer, T., Berks, B.C., The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli (2000) J. Biol. Chem., 275, pp. 11591-11596; Stanley, N.R., Sargent, F., Buchanan, G., Shi, J., Stewart, V., Palmer, T., Berks, B.C., Behaviour of topological marker proteins targeted to the Tat protein transport pathway (2002) Mol. Microbiol., 43, pp. 1005-10021; Tamakoshi, M., Uchida, M., Tanabe, K., Fukuyama, S., Yamagishi, A., Oshima, T., A new Thermus-Escherichia coli shuttle integration vector system (1997) J. Bacteriol., 179, pp. 4811-4814; Tommassen, J., Leunissen, J., Van Damme-Jongsten, M., Overduin, P., Failure of E. coli K-12 to transport PhoE-LacZ hybrid proteins out of the cytoplasm (1985) EMBO J., 4, pp. 1041-1047; Vieille, C., Zeikus, G.J., Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability (2001) Microbiol. Mol. Biol. Rev., 65, pp. 1-43; Voulhoux, R., Ball, G., Ize, B., Vasil, M.L., Lazdunski, A., Wu, L.F., Filloux, A., Involvement of the twin-arginine translocation system in protein secretion via the type II pathway (2001) EMBO J., 20, pp. 6735-6741; Weiner, J.H., Bilous, P.T., Shaw, G.M., Lubitz, S.P., Frost, L., Thomas, G.H., Cole, J., Turner, R.J., A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins (1998) Cell, 93, pp. 93-101; Wexler, M., Sargent, F., Jack, R.L., Stanley, N.R., Bogsch, E.G., Robinson, C., Berks, B.C., Palmer, T., TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export (2000) J. Biol. Chem., 275, pp. 16717-16722; Wu, L.-F., Ize, B., Chanal, A., Quentin, Y., Fichant, G., Bacterial twin-arginine signal peptide-dependent protein translocation pathway: Evolution and mechanism (2000) J. Mol. Microbiol. Biotechnol., 2, pp. 179-189; Yahr, T.L., Wickner, W.T., Functional reconstitution of bacterial Tat translocation in vitro (2001) EMBO J., 20, pp. 2472-2479"
[2] "Adhya, T.K., Rath, A.K., Gupta, P.K., Rao, V.R., Das, S.N., Parida, K.M., Parashar, D.C., Sethunathan, N., Methane emission from flooded rice fields under irrigated conditions (1994) Biol. Fertil. Soils, 18, pp. 245-248; Aulakh, M.S., Bodenbender, J., Wassmann, R., Rennenberg, H., Methane transport capacity of rice plants. Part I. Influence of CH4 concentration and growth stage analyzed with an automated measuring system (2000) Nutr. Cycling Agroecosyst., 58, pp. 357-366; Aulakh, M.S., Bodenbender, J., Wassmann, R., Rennenberg, H., Methane transport capacity of rice plants. Part II. Variations among different rice cultivars and relationship with morphological characteristics (2000) Nutr. Cycling Agroecosyst., 58, pp. 367-375; Aulakh, M.S., Wassmann, R., Rennenberg, H., Fink, S., Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars (2000) Plant Biol., 2, pp. 182-194; Aulakh, M.S., Wassmann, R., Bueno, C., Kreuzwieser, J., Rennenberg, H., Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars (2001) Plant Biol., 3, pp. 139-148; Aulakh, M.S., Wassmann, R., Bueno, C., Rennenberg, H., Impact of root exudates of different cultivars and plant developmental stages of rice (Oryza sativa L.) on methane production in a paddy soil (2001) Plant Soil, 230, pp. 77-86; Aulakh, M.S., Wassmann, R., Rennenberg, H., Methane emissions from rice fields - Quantification, role of management, and mitigation options (2001) Adv. Agron., 70, pp. 193-260; Bartolome, V.I., Casumpang, R.M., Ynalvez, M.A.H., Olea, A.B., McLaren, C.G., (1999) IRRISTAT for Windows - Statistical software for agricultural research, , Biometrics, International Rice Research Institute, Los Banos, the Philippines; Butterbach-Bahl, K., Papen, H., Rennenberg, H., Impact of gas transport through rice cultivars on methane emission from rice paddy fields (1997) Plant Cell Environ., 20, pp. 1175-1183; Cochran, W.G., Cox, G.M., (1950) Experimental Designs, , Wiley, New York; Gomez, K.A., (1972) Techniques for field experiments with rice, , International Rice Research Institute, Los Banos, the Philippines; Kesheng, S., Zhen, L., Effect of rice cultivars and fertilizer management on methane emission in a rice paddy in Beijing (1997) Nutr. Cycling Agroecosyst., 49, pp. 139-146; Lu, Y., Wassmann, R., Neue, H.U., Bueno, C.S., Huang, C., Response of methanogenesis in anaerobic rice soils to exogenous substrates (2000) Soil Biol. Biochem., 32, pp. 1683-1690; Minami, K., Neue, H.U., Rice paddies as a methane source (1994) Climate Change, 27, pp. 13-26; Minoda, T., Kimura, M., Contribution of photosynthesized carbon to the methane emitted from paddy fields (1994) Geophys. Res. Lett., 21, pp. 2007-2010; Mitra, S., Jain, M.C., Kumar, S., Bandyopadhya, S.K., Kalra, N., Effect of rice cultivars on methane emission (1999) Agri. Ecosyst. Environ., 73, pp. 177-183; Rennenberg, H., Wassmann, R., Papen, H., Seiler, W., Trace gas emission in rice cultivation (1992) Ecol. Bull., 42, pp. 164-173; Sass, R.L., Fisher, F.M., Harcombe, P.A., Turner, F.T., Mitigation of methane emission from rice fields: Effect of incorporated rice straw (1991) Global Biogeochem. Cycles, 5, pp. 275-288; Shalini, S., Kumar, S., Jain, M.C., Methane emission from two Indian soils planted with different rice cultivars (1997) Biol. Fertil. Soils, 25, pp. 285-289; Sigren, L.K., Byrd, G.T., Fisher, F.M., Sass, R.L., Comparison of soil acetate concentrations and methane production, transport, and emission in two rice cultivars (1997) Global Biochem. Cycles, 11, pp. 1-14; Wang, B., Neue, H.U., Samonte, H.P., Effect of cultivar difference (IR72, IR65598 and Dular) on methane emission (1997) Agri. Ecosyst. Environ., 62, pp. 31-40; Wassmann, R., Aulakh, M.S., The role of rice plants in regulating mechanisms of methane emissions (2000) Biol. Fertil. Soils, 31, pp. 20-29; Wassmann, R., Lantin, R.S., Neue, H.U., Buendia, L.V., Corton, T.M., Lu, Y., Characterization of methane emissions in Asia. Part 3. Mitigation options and future research needs (2000) Nutr. Cycling Agroecosyst., 58, pp. 23-36; Watanabe, A., Kajiwara, M., Tashiro, T., Kimura, M., Influence of rice cultivar on methane emission from paddy fields (1995) Plant Soil, 17, pp. 51-56"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
[3] "Ahring, B.K., Methanogenesis in thermophilic biogas reactors (1995) Antonie van Leeuwenhoek, 67, pp. 91-102; Ainsworth, S., (1977) Steady state enzyme kinetics, , London: Macmillan Press; Angelidaki, I., Ellagard, L., Ahring, B.K., A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition (1993) Biotechnol Bioeng, 42, pp. 159-166; Angelidaki, I., Ellagard, L., Ahring, B.K., A comprehensive model of anaerobic bioconversion of complex substrates to biogas (1999) Biotechnol Bioeng, 63, pp. 363-372; Bastin, G., Dochain, D., Haest, M., Installe, M., Opdenacker, Ph., Modelling and adaptive control of a continuous anaerobic fermentation process (1982) Proceedings of IFAC symposium modeling and control of biotechnical processes, pp. 299-306. , Holm A, editor. Helsinki, Finland; Chalon, A., Bastin, G., Installe, M., Identification of a biomethanization process: A case study (1982) IFAC Symp on identification and system parameter estimation, pp. 409-413. , Washington DC USA; Chappell, M.J., Godfrey, K.R., Vajda, S., Global identifiability of the parameters of nonlinear systems with special inputs: A comparison of methods (1990) Math Biosci, 102, pp. 41-73; Cox, D.R., Hinkley, C.V., (1974) Theoretical statistics, , Bekeg GA, Soredis GU, editors. Chapman & Hall; Denis-Vidal, L., Joly-Blanchard, Gh., Noiret, C., (2001) Some effective approaches to check the identifiability of uncontrolled nonlinear systems, 57, pp. 35-44; Dochain, D., Vanrolleghem, P.A., Van Daele, M., Structural identifiability of biokinetic models of activated sludge respiration (1995) Wat Res, 11, pp. 2571-2578; Forster, C., Wase, D., (1990) Environmental biotechnology, , Chichester. Ellis Horwood Limited; Ghaly, A.E., Pyke, J.B., Amelioration of methane yield in cheese whey fermentation by controlling the pH of the methanogenic stage (1991) Appl Biochem Biotechnol, 27, pp. 217-237; Godfray, K.R., DiStefano, J.J., Identifiability of model parameters (1985) identification and system parameter estimation, pp. 89-114. , Oxford: Pergamon Press; Hansen, K.H., Angelidaki, I., Ahring, B.K., Anaerobic digestion of swine manure: Inhibition by ammonia (1998) Wat Res, 32, pp. 5-12; Hill, D.T., Barth, C.L., A dynamical model for simulation of animal waste digestion (1977) J Water Pollution Contr Fed, 10, pp. 2129-2143; Hill, D.T., Tollner, E.W., Holmberg, R.D., The kinetics of inhibition in methane fermentation of swine manure (1983) Agric Wastes, 5, pp. 105-123; Holmberg, A., On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities (1982) Math Biosci, 62, pp. 23-43; Husain, A., Mathematical models of the kinetics of anaerobic digestion - A selected review (1998) Biomass Bioenergy, 14, pp. 561-571; Jeyaseelan, S., A simple mathematical model for anaerobic digestion process (1997) Wat Sci Tech, 35, pp. 185-191; Joly-Blanchard, G., Denis-Vidal, L., Some remarks about an identifiability results of nonlinear systems (1998) Automatica, 34, pp. 1151-1152; Julien, S., Babary, J.P., Lessard, P., Theoretical and practical identifiability of a reduced order model in an activated sludge process doing nitrification and denitrification (1998) Wat Sci Technol, 37, pp. 309-316; Kalyuzhnyi, S., Veeken, A., Hamelers, B., Two-particle model of anaerobic solid state fermentation (2000) Wat Sci Technol, 41, pp. 43-50; Kiely, G., Tayfur, G., Dolan, C., Tanji, K., Physical and mathematical modelling of anaerobic digestion of organic wastes (1997) Wat Res, 31, pp. 534-541; Kus, F., Wiesmann, V., Degradation kinetics of acetat mixed cultures (1995) Wat Res, 29, pp. 1427-1443; Ljung, L., Glad, T., On global identifiability for arbitrary model parametrization (1994) Automatica, 30, pp. 265-276; Masse, D.I., Droste, R.L., Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor (2000) Wat Res, 34, pp. 3087-3106; Merkel, W., Manz, W., Szewzyk, U., Krauth, K., Population dynamics in anaerobic wastewater reactors: Modeling and in situ characterization (1999) Wat Res, 33, pp. 2392-2402; Möche, M., Jördening, H.J., Comparison of different models of substrate and product inhibition in anaerobic digestion (1999) Wat Res, 33, pp. 2545-2554; Nopens, I., Hopkins, L.N., Vanrolleghem, P.A., An overview of the posters, presented at Watermatex 2000. III: Model selection and calibration/optimal experimental design (2001) Wat Sci Technol, 43, pp. 387-389; Noykova, N., Gyllenberg, M., Sensitivity analysis and parameter estimation in a model of anaerobic waste water treatment processes with substrate inhibition (2000) Bioproc Eng, 23, pp. 343-349; Pohjanpalo, H., (1982) Identifiability of deterministic differential models in state space. An implementation for a computer, , (Research report 56). Espoo: Technical Research Center of Finland; Pollard, P.C., Greenfield, P.F., Measuring in situ bacterial specific growth rates and population dynamics in wastewaters (1997) Wat Res, 31, pp. 1074-1082; Press, W., Teukolsky, S., Flannery, B., Wetterling, W., (1992) Numerical recipes, , Cambridge, UK: Cambridge University Press; Schürbüscher, D., Wandrey, C., Anaerobic waste water process models (1991) Biotechnology, a multi-volume compehensive treatise, vol. 4: Measuring, modelling and control, 4, pp. 445-484. , Schügerl K., editor. Weinheim: VCH; Simeonov, I., Momchev, V., Grancharov, D., Dynamic modelling of mesophilic anaerobic digestion of animal waste (1996) Wat Res, 30, pp. 1087-1094; Thomas, M.V., Nordstedt, R.A., Generic anaerobic digestion model for the simulation of various reactor types and substrates (1993) Trans ASAE, 36, pp. 537-544; Vajda, S., Godfrey, K.R., Rabitz, H., Similarity transformation approach to identifiability analysis of nonlinear compartmental models (1989) Math Biosci, 93, pp. 217-248; Vanrolleghem, P.A., Dochain, D., Bioprocess Model Identification (1998) Advanced instrumentation, data interpretation, and control of biotechnological processes, pp. 251-318. , Van Impe JFM, Vanrolleghem PA, Iserentant D, editors. Dordrecht: Kluwer; Münch, E.V., Keller, J., Lant, P., Newell, R., Mathematical modelling of prefermenters - I. Model development and verification (1999) Wat Res, 33, pp. 2757-2768; Münch, E.V., Keller, J., Lant, P., Newell, R., Mathematical modelling of prefermenters - II. Model applications (1999) Wat Res, 33, pp. 2844-2854; Wang, D.M., An implementation of the characteristic set method in MAPLE (1995) Automated practical reasoning: algebraic approaches, pp. 187-201. , Pfalzgraf J, Wang D, editors. Springer, New York; Yordanova, S.T., Noykova, N.A., Influence of perturbations on the waste water treatment process (1996) Chem Biochem Eng Q, 10, pp. 9-14"

#my patterns p_i come from a different data frame also with variable number of rows
print(ref_year2002$Title[1:10])
 [1] "Struc3ture and mechanism of chalcone synthase-like polyketide synthases"                                                                                                  
 [2] "Role of Acinetobacter for biodegradability of quaternary ammonium compounds"                                                                                              
 [3] "Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes"                                                                       
 [4] "Estimation of the microcystin content in cyanobacterial field samples from German lakes using the colorimetric protein-phosphatase inhibition assay and RP-HPLC"          
 [5] "Microcystins (hepatotoxic heptapeptides) in German fresh water bodies"                                                                                                    
 [6] "Immunogenic efficacy of differently produced recombinant vaccines candidates against Pseudomonas aeruginosa infections"                                                   
 [7] "Mapping the biomass of Bornean tropical rain forest from remotely sensed data"                                                                                            
 [8] "Altered physiological and growth responses to elevated [CO2] in offspring from holm oak (Quercus ilex L.) mother trees with lifetime exposure to naturally elevated [CO2]"
 [9] "Substrate specificities of the chloromuconate cycloisomerases from Pseudomonas sp. B13, Ralstonia eutropha JMP134 and Pseudomonas sp. P51"                                
[10] "Surface reconstitution of a de novo synthesized hemoprotein for bioelectronic applications"

for now my approach is to use the for loop, but I'm not very good at this现在我的方法是使用 for 循环,但我不太擅长这个

for (i in ref_year2002$Title[1:126])
    c(grabl(year2002$References, i, maxDist = 8))

So far the code, unsurprisingly, does not yield any results.不出所料,到目前为止,代码没有产生任何结果。

  • Can I pull the values directly from the data frame or do I have to create a vector in the code and how do I do this?我可以直接从数据框中提取值,还是必须在代码中创建一个向量,我该怎么做?
  • How can I create an output vector for each iteration?如何为每次迭代创建一个 output 向量?

I'm grateful for any helpful idea!我很感激任何有用的想法!

Jonas乔纳斯

Something like the following might do what you want.像下面这样的东西可能会做你想要的。 Untested, since there is no data.未经测试,因为没有数据。

# create a list to hold the results beforehand
results_list <- vector("list", length = 126)
for(i in 1:126) {
  results_list[[i]] <- grabl(year2002$References, ref_year2002$Title[i], maxDist = 8))
}

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM