簡體   English   中英

如何在stringdist中使用grabl function為多個output向量創建循環

[英]how to create loop for multiple output vectors with grabl function in stringdist

我正在嘗試為 stringdist 中的grabl function 創建一個循環,該循環重復以下步驟:

  • 從向量中選擇一個字符串模式並作為 p_i 插入
  • 匹配表 x 中的字符串
  • 創建 output 向量 vec_i
  • 重復所有 i = 1, ..., n

這樣,最后,我產生了 n 個 output 向量

grabl(x, pattern, maxDist = )

#my x is a column of a data frame with variable number of rows
> print(year2002$References[1:3])
[1] "Angelini, S., Moreno, R., Gouffi, K., Santini, C.-L., Yamagishi, A., Berenguer, J., Wu, L.-F., Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli (2001) FEBS Lett., 506, pp. 103-107; Bernhard, M., Friedrich, B., Siddiqui, R.A., Ralstonia eutropha TF93 is blocked in tat-mediated protein export (2000) J. Bacteriol., 182, pp. 581-588; Blaudeck, N., Sprenger, G.A., Freudl, R., Wiegert, T., Specificity of signal peptide recognition in tat-dependent bacterial protein translocation (2001) J. Bacteriol., 183, pp. 604-610; Bogsch, E., Sargent, F., Stanley, N.R., Berks, B.C., Robinson, C., Palmer, T., An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria (1998) J. Biol. Chem., 273, pp. 18003-18006; Chanal, A., Santini, C.-L., Wu, L.-F., Potential receptor function of three homologous components, TatA, TatB and TatE, of the twin-arginine signal sequence-dependent metalloenzyme translocation pathway in Escherichia coli (1998) Mol. Microbiol., 30, pp. 674-676; Cristobal, S., De Gier, J.-W., Nielsen, H., Von Heijne, G., Competition between Sec- and TAT-dependent protein translocation in Escherichia coli (1999) EMBO J., 18, pp. 2982-2990; Dion, M., Fourage, L., Hallet, J.N., Colas, B., Cloning and expression of a beta-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme (1999) Glycoconj. J., 16, pp. 27-37; Guzman, L.-M., Belin, D., Carson, M.J., Beckwith, J., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter (1995) J. Bacteriol., 177, pp. 4121-4130; Halbig, D., Wiegert, T., Blaudeck, N., Freudl, R., Sprenger, G.A., The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding (1999) Eur. J. Biochem., 263, pp. 543-551; Heikkila, M.P., Honisch, U., Wunsch, P., Zumft, W.G., Role of the Tat transport system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis in Pseudomonas stutzeri (2001) J. Bacteriol., 183, pp. 1663-1671; Ito, K., Akiyama, Y., Yura, T., Shiba, K., Diverse effects of the MalE-LacZ hybrid protein on Escherichia coli cell physiology (1986) J. Bacteriol., 167, pp. 201-204; Jongbloed, J.D., Martin, U., Antelmann, H., Hecker, M., Tjalsma, H., Venema, G., Bron, S., Muller, J., TatC is a specificity determinant for protein secretion via the twin- arginine translocation pathway (2000) J. Biol. Chem., 275, pp. 41350-41357; Kiino, D.R., Phillips, G.J., Silhavy, T.J., Increased expression of the bifunctional protein PrlF suppresses overproduction lethality associated with exported beta-galactosidase hybrid proteins in Escherichia coli (1990) J. Bacteriol., 172, pp. 185-192; Manoil, C., Analysis of protein localization by use of gene fusions with complementary properties (1990) J. Bacteriol., 172, pp. 1035-1042; Manoil, C., Bailey, J., A simple screen for permissive sites in proteins: Analysis of Escherichia coli lac permease (1997) J. Mol. Biol., 267, pp. 250-263; Miller, J.H., (1972) Experiments in Molecular Genetics, , Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; Nelson, B.D., Traxler, B., Exploring the role of integral membrane proteins in ATP-binding cassette transporters: Analysis of a collection of MalG insertion mutants (1998) J. Bacteriol., 180, pp. 2507-2514; Pugsley, A.P., The complete general secretory pathway in gram-negative bacteria (1993) Microbiol. Rev., 57, pp. 50-108; Rodrigue, A., Chanal, A., Beck, K., Muller, M., Wu, L., Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway (1999) J. Biol. Chem., 274, pp. 13223-13228; Sanders, C., Wethkamp, N., Lill, H., Transport of cytochrome c derivatives by the bacterial Tat protein translocation system (2001) Mol. Microbiol., 41, pp. 241-246; Santini, C.-L., Bernadac, A., Zhang, M., Chanal, A., Ize, B., Blanco, C., Wu, L.-F., Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock (2001) J. Biol. Chem., 276, pp. 8159-8164; Santini, C.L., Ize, B., Chanal, A., Müller, M., Giordano, G., Wu, L.-F., A novel Sec-independent periplasmic protein translocation pathway in Escherichia coli (1998) EMBO J., 17, pp. 101-112; Sargent, F., Bogsch, E.G., Stanley, N.R., Wexler, M., Robinson, C., Berks, B.C., Palmer, T., Overlapping functions of components of a bacterial Sec-independent protein export pathway (1998) EMBO J., 17, pp. 3640-3650; Sargent, F., Stanley, N.R., Berks, B.C., Palmer, T., Sec-independent protein translocation in Escherichia coli: A distinct and pivotal role for the TatB protein (1999) J. Biol. Chem., 274, pp. 36073-36082; Schaerlaekens, K., Schierova, M., Lammertyn, E., Geukens, N., Anne, J., Van Mellaert, L., Twin-arginine translocation pathway in Streptomyces lividans (2001) J. Bacteriol., 183, pp. 6727-6732; Schatz, G., Dobberstein, B., Common principles of protein translocation across membranes (1996) Science, 271, pp. 1519-1526; Settles, A.M., Yonetani, A., Baron, A., Bush, D.R., Cline, K., Martienssen, R., Sec-independent protein translocation by the maize Hcf106 protein (1997) Science, 278, pp. 1467-1470; Snyder, W.B., Silhavy, T.J., Beta-galactosidase is inactivated by intermolecular disulfide bonds and is toxic when secreted to the periplasm of Escherichia coli (1995) J. Bacteriol., 177, pp. 953-963; Stanley, N.R., Findlay, K., Berks, B.C., Palmer, T., Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope (2001) J. Bacteriol., 183, pp. 139-144; Stanley, N.R., Palmer, T., Berks, B.C., The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli (2000) J. Biol. Chem., 275, pp. 11591-11596; Stanley, N.R., Sargent, F., Buchanan, G., Shi, J., Stewart, V., Palmer, T., Berks, B.C., Behaviour of topological marker proteins targeted to the Tat protein transport pathway (2002) Mol. Microbiol., 43, pp. 1005-10021; Tamakoshi, M., Uchida, M., Tanabe, K., Fukuyama, S., Yamagishi, A., Oshima, T., A new Thermus-Escherichia coli shuttle integration vector system (1997) J. Bacteriol., 179, pp. 4811-4814; Tommassen, J., Leunissen, J., Van Damme-Jongsten, M., Overduin, P., Failure of E. coli K-12 to transport PhoE-LacZ hybrid proteins out of the cytoplasm (1985) EMBO J., 4, pp. 1041-1047; Vieille, C., Zeikus, G.J., Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability (2001) Microbiol. Mol. Biol. Rev., 65, pp. 1-43; Voulhoux, R., Ball, G., Ize, B., Vasil, M.L., Lazdunski, A., Wu, L.F., Filloux, A., Involvement of the twin-arginine translocation system in protein secretion via the type II pathway (2001) EMBO J., 20, pp. 6735-6741; Weiner, J.H., Bilous, P.T., Shaw, G.M., Lubitz, S.P., Frost, L., Thomas, G.H., Cole, J., Turner, R.J., A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins (1998) Cell, 93, pp. 93-101; Wexler, M., Sargent, F., Jack, R.L., Stanley, N.R., Bogsch, E.G., Robinson, C., Berks, B.C., Palmer, T., TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export (2000) J. Biol. Chem., 275, pp. 16717-16722; Wu, L.-F., Ize, B., Chanal, A., Quentin, Y., Fichant, G., Bacterial twin-arginine signal peptide-dependent protein translocation pathway: Evolution and mechanism (2000) J. Mol. Microbiol. Biotechnol., 2, pp. 179-189; Yahr, T.L., Wickner, W.T., Functional reconstitution of bacterial Tat translocation in vitro (2001) EMBO J., 20, pp. 2472-2479"
[2] "Adhya, T.K., Rath, A.K., Gupta, P.K., Rao, V.R., Das, S.N., Parida, K.M., Parashar, D.C., Sethunathan, N., Methane emission from flooded rice fields under irrigated conditions (1994) Biol. Fertil. Soils, 18, pp. 245-248; Aulakh, M.S., Bodenbender, J., Wassmann, R., Rennenberg, H., Methane transport capacity of rice plants. Part I. Influence of CH4 concentration and growth stage analyzed with an automated measuring system (2000) Nutr. Cycling Agroecosyst., 58, pp. 357-366; Aulakh, M.S., Bodenbender, J., Wassmann, R., Rennenberg, H., Methane transport capacity of rice plants. Part II. Variations among different rice cultivars and relationship with morphological characteristics (2000) Nutr. Cycling Agroecosyst., 58, pp. 367-375; Aulakh, M.S., Wassmann, R., Rennenberg, H., Fink, S., Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars (2000) Plant Biol., 2, pp. 182-194; Aulakh, M.S., Wassmann, R., Bueno, C., Kreuzwieser, J., Rennenberg, H., Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars (2001) Plant Biol., 3, pp. 139-148; Aulakh, M.S., Wassmann, R., Bueno, C., Rennenberg, H., Impact of root exudates of different cultivars and plant developmental stages of rice (Oryza sativa L.) on methane production in a paddy soil (2001) Plant Soil, 230, pp. 77-86; Aulakh, M.S., Wassmann, R., Rennenberg, H., Methane emissions from rice fields - Quantification, role of management, and mitigation options (2001) Adv. Agron., 70, pp. 193-260; Bartolome, V.I., Casumpang, R.M., Ynalvez, M.A.H., Olea, A.B., McLaren, C.G., (1999) IRRISTAT for Windows - Statistical software for agricultural research, , Biometrics, International Rice Research Institute, Los Banos, the Philippines; Butterbach-Bahl, K., Papen, H., Rennenberg, H., Impact of gas transport through rice cultivars on methane emission from rice paddy fields (1997) Plant Cell Environ., 20, pp. 1175-1183; Cochran, W.G., Cox, G.M., (1950) Experimental Designs, , Wiley, New York; Gomez, K.A., (1972) Techniques for field experiments with rice, , International Rice Research Institute, Los Banos, the Philippines; Kesheng, S., Zhen, L., Effect of rice cultivars and fertilizer management on methane emission in a rice paddy in Beijing (1997) Nutr. Cycling Agroecosyst., 49, pp. 139-146; Lu, Y., Wassmann, R., Neue, H.U., Bueno, C.S., Huang, C., Response of methanogenesis in anaerobic rice soils to exogenous substrates (2000) Soil Biol. Biochem., 32, pp. 1683-1690; Minami, K., Neue, H.U., Rice paddies as a methane source (1994) Climate Change, 27, pp. 13-26; Minoda, T., Kimura, M., Contribution of photosynthesized carbon to the methane emitted from paddy fields (1994) Geophys. Res. Lett., 21, pp. 2007-2010; Mitra, S., Jain, M.C., Kumar, S., Bandyopadhya, S.K., Kalra, N., Effect of rice cultivars on methane emission (1999) Agri. Ecosyst. Environ., 73, pp. 177-183; Rennenberg, H., Wassmann, R., Papen, H., Seiler, W., Trace gas emission in rice cultivation (1992) Ecol. Bull., 42, pp. 164-173; Sass, R.L., Fisher, F.M., Harcombe, P.A., Turner, F.T., Mitigation of methane emission from rice fields: Effect of incorporated rice straw (1991) Global Biogeochem. Cycles, 5, pp. 275-288; Shalini, S., Kumar, S., Jain, M.C., Methane emission from two Indian soils planted with different rice cultivars (1997) Biol. Fertil. Soils, 25, pp. 285-289; Sigren, L.K., Byrd, G.T., Fisher, F.M., Sass, R.L., Comparison of soil acetate concentrations and methane production, transport, and emission in two rice cultivars (1997) Global Biochem. Cycles, 11, pp. 1-14; Wang, B., Neue, H.U., Samonte, H.P., Effect of cultivar difference (IR72, IR65598 and Dular) on methane emission (1997) Agri. Ecosyst. Environ., 62, pp. 31-40; Wassmann, R., Aulakh, M.S., The role of rice plants in regulating mechanisms of methane emissions (2000) Biol. Fertil. Soils, 31, pp. 20-29; Wassmann, R., Lantin, R.S., Neue, H.U., Buendia, L.V., Corton, T.M., Lu, Y., Characterization of methane emissions in Asia. Part 3. Mitigation options and future research needs (2000) Nutr. Cycling Agroecosyst., 58, pp. 23-36; Watanabe, A., Kajiwara, M., Tashiro, T., Kimura, M., Influence of rice cultivar on methane emission from paddy fields (1995) Plant Soil, 17, pp. 51-56"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
[3] "Ahring, B.K., Methanogenesis in thermophilic biogas reactors (1995) Antonie van Leeuwenhoek, 67, pp. 91-102; Ainsworth, S., (1977) Steady state enzyme kinetics, , London: Macmillan Press; Angelidaki, I., Ellagard, L., Ahring, B.K., A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition (1993) Biotechnol Bioeng, 42, pp. 159-166; Angelidaki, I., Ellagard, L., Ahring, B.K., A comprehensive model of anaerobic bioconversion of complex substrates to biogas (1999) Biotechnol Bioeng, 63, pp. 363-372; Bastin, G., Dochain, D., Haest, M., Installe, M., Opdenacker, Ph., Modelling and adaptive control of a continuous anaerobic fermentation process (1982) Proceedings of IFAC symposium modeling and control of biotechnical processes, pp. 299-306. , Holm A, editor. Helsinki, Finland; Chalon, A., Bastin, G., Installe, M., Identification of a biomethanization process: A case study (1982) IFAC Symp on identification and system parameter estimation, pp. 409-413. , Washington DC USA; Chappell, M.J., Godfrey, K.R., Vajda, S., Global identifiability of the parameters of nonlinear systems with special inputs: A comparison of methods (1990) Math Biosci, 102, pp. 41-73; Cox, D.R., Hinkley, C.V., (1974) Theoretical statistics, , Bekeg GA, Soredis GU, editors. Chapman & Hall; Denis-Vidal, L., Joly-Blanchard, Gh., Noiret, C., (2001) Some effective approaches to check the identifiability of uncontrolled nonlinear systems, 57, pp. 35-44; Dochain, D., Vanrolleghem, P.A., Van Daele, M., Structural identifiability of biokinetic models of activated sludge respiration (1995) Wat Res, 11, pp. 2571-2578; Forster, C., Wase, D., (1990) Environmental biotechnology, , Chichester. Ellis Horwood Limited; Ghaly, A.E., Pyke, J.B., Amelioration of methane yield in cheese whey fermentation by controlling the pH of the methanogenic stage (1991) Appl Biochem Biotechnol, 27, pp. 217-237; Godfray, K.R., DiStefano, J.J., Identifiability of model parameters (1985) identification and system parameter estimation, pp. 89-114. , Oxford: Pergamon Press; Hansen, K.H., Angelidaki, I., Ahring, B.K., Anaerobic digestion of swine manure: Inhibition by ammonia (1998) Wat Res, 32, pp. 5-12; Hill, D.T., Barth, C.L., A dynamical model for simulation of animal waste digestion (1977) J Water Pollution Contr Fed, 10, pp. 2129-2143; Hill, D.T., Tollner, E.W., Holmberg, R.D., The kinetics of inhibition in methane fermentation of swine manure (1983) Agric Wastes, 5, pp. 105-123; Holmberg, A., On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities (1982) Math Biosci, 62, pp. 23-43; Husain, A., Mathematical models of the kinetics of anaerobic digestion - A selected review (1998) Biomass Bioenergy, 14, pp. 561-571; Jeyaseelan, S., A simple mathematical model for anaerobic digestion process (1997) Wat Sci Tech, 35, pp. 185-191; Joly-Blanchard, G., Denis-Vidal, L., Some remarks about an identifiability results of nonlinear systems (1998) Automatica, 34, pp. 1151-1152; Julien, S., Babary, J.P., Lessard, P., Theoretical and practical identifiability of a reduced order model in an activated sludge process doing nitrification and denitrification (1998) Wat Sci Technol, 37, pp. 309-316; Kalyuzhnyi, S., Veeken, A., Hamelers, B., Two-particle model of anaerobic solid state fermentation (2000) Wat Sci Technol, 41, pp. 43-50; Kiely, G., Tayfur, G., Dolan, C., Tanji, K., Physical and mathematical modelling of anaerobic digestion of organic wastes (1997) Wat Res, 31, pp. 534-541; Kus, F., Wiesmann, V., Degradation kinetics of acetat mixed cultures (1995) Wat Res, 29, pp. 1427-1443; Ljung, L., Glad, T., On global identifiability for arbitrary model parametrization (1994) Automatica, 30, pp. 265-276; Masse, D.I., Droste, R.L., Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor (2000) Wat Res, 34, pp. 3087-3106; Merkel, W., Manz, W., Szewzyk, U., Krauth, K., Population dynamics in anaerobic wastewater reactors: Modeling and in situ characterization (1999) Wat Res, 33, pp. 2392-2402; Möche, M., Jördening, H.J., Comparison of different models of substrate and product inhibition in anaerobic digestion (1999) Wat Res, 33, pp. 2545-2554; Nopens, I., Hopkins, L.N., Vanrolleghem, P.A., An overview of the posters, presented at Watermatex 2000. III: Model selection and calibration/optimal experimental design (2001) Wat Sci Technol, 43, pp. 387-389; Noykova, N., Gyllenberg, M., Sensitivity analysis and parameter estimation in a model of anaerobic waste water treatment processes with substrate inhibition (2000) Bioproc Eng, 23, pp. 343-349; Pohjanpalo, H., (1982) Identifiability of deterministic differential models in state space. An implementation for a computer, , (Research report 56). Espoo: Technical Research Center of Finland; Pollard, P.C., Greenfield, P.F., Measuring in situ bacterial specific growth rates and population dynamics in wastewaters (1997) Wat Res, 31, pp. 1074-1082; Press, W., Teukolsky, S., Flannery, B., Wetterling, W., (1992) Numerical recipes, , Cambridge, UK: Cambridge University Press; Schürbüscher, D., Wandrey, C., Anaerobic waste water process models (1991) Biotechnology, a multi-volume compehensive treatise, vol. 4: Measuring, modelling and control, 4, pp. 445-484. , Schügerl K., editor. Weinheim: VCH; Simeonov, I., Momchev, V., Grancharov, D., Dynamic modelling of mesophilic anaerobic digestion of animal waste (1996) Wat Res, 30, pp. 1087-1094; Thomas, M.V., Nordstedt, R.A., Generic anaerobic digestion model for the simulation of various reactor types and substrates (1993) Trans ASAE, 36, pp. 537-544; Vajda, S., Godfrey, K.R., Rabitz, H., Similarity transformation approach to identifiability analysis of nonlinear compartmental models (1989) Math Biosci, 93, pp. 217-248; Vanrolleghem, P.A., Dochain, D., Bioprocess Model Identification (1998) Advanced instrumentation, data interpretation, and control of biotechnological processes, pp. 251-318. , Van Impe JFM, Vanrolleghem PA, Iserentant D, editors. Dordrecht: Kluwer; Münch, E.V., Keller, J., Lant, P., Newell, R., Mathematical modelling of prefermenters - I. Model development and verification (1999) Wat Res, 33, pp. 2757-2768; Münch, E.V., Keller, J., Lant, P., Newell, R., Mathematical modelling of prefermenters - II. Model applications (1999) Wat Res, 33, pp. 2844-2854; Wang, D.M., An implementation of the characteristic set method in MAPLE (1995) Automated practical reasoning: algebraic approaches, pp. 187-201. , Pfalzgraf J, Wang D, editors. Springer, New York; Yordanova, S.T., Noykova, N.A., Influence of perturbations on the waste water treatment process (1996) Chem Biochem Eng Q, 10, pp. 9-14"

#my patterns p_i come from a different data frame also with variable number of rows
print(ref_year2002$Title[1:10])
 [1] "Struc3ture and mechanism of chalcone synthase-like polyketide synthases"                                                                                                  
 [2] "Role of Acinetobacter for biodegradability of quaternary ammonium compounds"                                                                                              
 [3] "Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes"                                                                       
 [4] "Estimation of the microcystin content in cyanobacterial field samples from German lakes using the colorimetric protein-phosphatase inhibition assay and RP-HPLC"          
 [5] "Microcystins (hepatotoxic heptapeptides) in German fresh water bodies"                                                                                                    
 [6] "Immunogenic efficacy of differently produced recombinant vaccines candidates against Pseudomonas aeruginosa infections"                                                   
 [7] "Mapping the biomass of Bornean tropical rain forest from remotely sensed data"                                                                                            
 [8] "Altered physiological and growth responses to elevated [CO2] in offspring from holm oak (Quercus ilex L.) mother trees with lifetime exposure to naturally elevated [CO2]"
 [9] "Substrate specificities of the chloromuconate cycloisomerases from Pseudomonas sp. B13, Ralstonia eutropha JMP134 and Pseudomonas sp. P51"                                
[10] "Surface reconstitution of a de novo synthesized hemoprotein for bioelectronic applications"

現在我的方法是使用 for 循環,但我不太擅長這個

for (i in ref_year2002$Title[1:126])
    c(grabl(year2002$References, i, maxDist = 8))

不出所料,到目前為止,代碼沒有產生任何結果。

  • 我可以直接從數據框中提取值,還是必須在代碼中創建一個向量,我該怎么做?
  • 如何為每次迭代創建一個 output 向量?

我很感激任何有用的想法!

喬納斯

像下面這樣的東西可能會做你想要的。 未經測試,因為沒有數據。

# create a list to hold the results beforehand
results_list <- vector("list", length = 126)
for(i in 1:126) {
  results_list[[i]] <- grabl(year2002$References, ref_year2002$Title[i], maxDist = 8))
}

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM