简体   繁体   中英

python optimize.leastsq: fitting a circle to 3d set of points

I am trying to use circle fitting code<\/a> for 3D data set. I have modified it for 3D points just adding z-coordinate where necessary. My modification works fine for one set of points and works bad for another. Please look at the code, if it has some errors.

import trig_items
import numpy as np
from trig_items import *
from numpy import *
from matplotlib import pyplot as p
from scipy import optimize

# Coordinates of the 3D points
##x = r_[36, 36, 19, 18, 33, 26]
##y = r_[14, 10, 28, 31, 18, 26]
##z = r_[0, 1, 2, 3, 4, 5]

x = r_[ 2144.18908574,  2144.26880854,  2144.05552972,  2143.90303742,  2143.62520676,
  2143.43628579,  2143.14005775,  2142.79919654,  2142.51436023,  2142.11240866,
  2141.68564346,  2141.29333828,  2140.92596405,  2140.3475612,   2139.90848046,
  2139.24661021,  2138.67384709,  2138.03313547,  2137.40301734,  2137.40908256,
  2137.06611224,  2136.50943781,  2136.0553113,   2135.50313189,  2135.07049922,
  2134.62098139,  2134.10459535,  2133.50838433,  2130.6600465,   2130.03537342,
  2130.04047644,  2128.83522468,  2127.79827542,  2126.43513385,  2125.36700593,
  2124.00350543,  2122.68564431,  2121.20709478,  2119.79047011,  2118.38417647,
  2116.90063343,  2115.52685778,  2113.82246629,  2112.21159431,  2110.63180117,
  2109.00713198,  2108.94434529,  2106.82777156,  2100.62343757,  2098.5090226,
  2096.28787738,  2093.91550703,  2091.66075061,  2089.15316429,  2086.69753869,
  2084.3002414,   2081.87590579,  2079.19141866,  2076.5394574,   2073.89128676,
  2071.18786213]
y = r_[ 725.74913818,  724.43874065,  723.15226506,  720.45950581,  717.77827954,
  715.07048092,  712.39633862,  709.73267688,  707.06039438,  704.43405908,
  701.80074596,  699.15371526,  696.5309022,   693.96109921,  691.35585501,
  688.83496327,  686.32148661,  683.80286662,  681.30705568,  681.30530975,
  679.66483676,  678.01922321,  676.32721779,  674.6667554,   672.9658024,
  671.23686095,  669.52021535,  667.84999077,  659.19757984,  657.46179949,
  657.45700508,  654.46901086,  651.38177517,  648.41739432,  645.32356976,
  642.39034578,  639.42628453,  636.51107198,  633.57732055,  630.63825133,
  627.75308356,  624.80162215,  622.01980232,  619.18814892,  616.37688894,
  613.57400131,  613.61535723,  610.4724493,   600.98277781,  597.84782844,
  594.75983001,  591.77946964,  588.74874068,  585.84525834,  582.92311166,
  579.99564481,  577.06666417,  574.30782762,  571.54115037,  568.79760614,
  566.08551098]
z = r_[ 339.77146775,  339.60021095,  339.47645894,  339.47130963,  339.37216218,
  339.4126132,   339.67942046,  339.40917728,  339.39500353,  339.15041461,
  339.38959195,  339.3358209,   339.47764895,  339.17854867,  339.14624071,
  339.16403926,  339.02308811,  339.27011082,  338.97684183,  338.95087698,
  338.97321177,  339.02175448,  339.02543922,  338.88725411,  339.06942374,
  339.0557553,   339.04414618,  338.89234303,  338.95572249,  339.00880416,
  339.00413073,  338.91080374,  338.98214758,  339.01135789,  338.96393537,
  338.73446188,  338.62784913,  338.72443217,  338.74880562,  338.69090173,
  338.50765186,  338.49056867,  338.57353355,  338.6196255,   338.43754399,
  338.27218569,  338.10587265,  338.43880881,  338.28962141,  338.14338705,
  338.25784154,  338.49792568,  338.15572139,  338.52967693,  338.4594245,
  338.1511823,   338.03711207,  338.19144663,  338.22022045,  338.29032321,
  337.8623197 ]

# coordinates of the barycenter
xm = mean(x)
ym = mean(y)
zm = mean(z)

### Basic usage of optimize.leastsq

def calc_R(xc, yc, zc):
    """ calculate the distance of each 3D points from the center (xc, yc, zc) """
    return sqrt((x - xc) ** 2 + (y - yc) ** 2 + (z - zc) ** 2)

def func(c):
    """ calculate the algebraic distance between the 3D points and the mean circle centered at c=(xc, yc, zc) """
    Ri = calc_R(*c)
    return Ri - Ri.mean()

center_estimate = xm, ym, zm
center, ier = optimize.leastsq(func, center_estimate)
##print center

xc, yc, zc = center
Ri       = calc_R(xc, yc, zc)
R        = Ri.mean()
residu   = sum((Ri - R)**2)
print 'R =', R

I guess the problem is the data and the corresponding algorithm. The least square method works fine if it produces a local parabolic minimum, such that a simple gradient method goes approximately direction minimum. Unfortunately, this is not necessarily the case for your data. You can check this by keeping some rough estimates for xc and yc fixed and plotting the sum of the squared residuals as a function of zc and R . I get a boomerang shaped minimum. Depending on your starting parameters you might end in one of the branches going away from the real minimum. Once in the valley this can be very flat such that you exceed the number of max iterations or get something that is accepted within the tolerance of the algorithm. As always, thinks are better the better your starting parameters. Unfortunately you have only a small arc of the circle, so that it is difficult to get better. I am not a specialist in Python, but I think that leastsq allows you to play with the Jacobian and Gradient Methods. Try to play with the tolerance as well. In short: the code looks basically fine to me, but your data is pathological and you have to adapt the code to that kind of data. There is a non-iterative solution in 2D from Karimäki, maybe you can adapt this method to 3D. You can also look at this . Sure you will find more literature.

I just checked the data using a Simplex-Algorithm. The minimum is, as I said, not well behaved. See here some cuts of the residual function. Only in the xy-plane you get some reasonable behavior. The properties of the zr- and xr- plane make the finding process very difficult.

在此输入图像描述

So in the beginning the simplex algorithm finds several almost stable solutions. You can see them as flat steps in the graph below (blue x, purple y, yellow z, green R). At the end the algorithm has to walk down the almost flat but very stretched out valley, resulting in the final conversion of z and R. Nevertheless, I expect many regions that look like a solution if the tolerance is insufficient. With the standard tolerance of 10^-5 the algoritm stopped after approx 350 iterations. I had to set it to 10^-10 to get this solution, ie [1899.32, 741.874, 298.696, 248.956], which seems quite ok.

在此输入图像描述

Update

As mentioned earlier, the solution depends on the working precision and requested accuracy. So your hand made gradient method works probably better as these values are different compared to the build-in least square fit. Nevertheless, this is my version making a two step fit. First I fit a plane to the data. In a next step I fit a circle within this plane. Both steps use the least square method. This time it works, as each step avoids critically shaped minima. (Naturally, the plane fit runs into problems if the arc segment becomes small and the data lies virtually on a straight line. But this will happen for all algorithms)

from math import *
from matplotlib import pyplot as plt
from scipy import optimize
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import pprint as pp

dataTupel=zip(xs,ys,zs) #your data from above

# Fitting a plane first
# let the affine plane be defined by two vectors, 
# the zero point P0 and the plane normal n0
# a point p is member of the plane if (p-p0).n0 = 0 

def distanceToPlane(p0,n0,p):
    return np.dot(np.array(n0),np.array(p)-np.array(p0))    

def residualsPlane(parameters,dataPoint):
    px,py,pz,theta,phi = parameters
    nx,ny,nz =sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)
    distances = [distanceToPlane([px,py,pz],[nx,ny,nz],[x,y,z]) for x,y,z in dataPoint]
    return distances

estimate = [1900, 700, 335,0,0] # px,py,pz and zeta, phi
#you may automize this by using the center of mass data
# note that the normal vector is given in polar coordinates
bestFitValues, ier = optimize.leastsq(residualsPlane, estimate, args=(dataTupel))
xF,yF,zF,tF,pF = bestFitValues

point  = [xF,yF,zF]
normal = [sin(tF)*cos(pF),sin(tF)*sin(pF),cos(tF)]

# Fitting a circle inside the plane
#creating two inplane vectors
sArr=np.cross(np.array([1,0,0]),np.array(normal))#assuming that normal not parallel x!
sArr=sArr/np.linalg.norm(sArr)
rArr=np.cross(sArr,np.array(normal))
rArr=rArr/np.linalg.norm(rArr)#should be normalized already, but anyhow


def residualsCircle(parameters,dataPoint):
    r,s,Ri = parameters
    planePointArr = s*sArr + r*rArr + np.array(point)
    distance = [ np.linalg.norm( planePointArr-np.array([x,y,z])) for x,y,z in dataPoint]
    res = [(Ri-dist) for dist in distance]
    return res

estimateCircle = [0, 0, 335] # px,py,pz and zeta, phi
bestCircleFitValues, ier = optimize.leastsq(residualsCircle, estimateCircle,args=(dataTupel))

rF,sF,RiF = bestCircleFitValues
print bestCircleFitValues

# Synthetic Data
centerPointArr=sF*sArr + rF*rArr + np.array(point)
synthetic=[list(centerPointArr+ RiF*cos(phi)*rArr+RiF*sin(phi)*sArr) for phi in np.linspace(0, 2*pi,50)]
[cxTupel,cyTupel,czTupel]=[ x for x in zip(*synthetic)]

### Plotting
d = -np.dot(np.array(point),np.array(normal))# dot product
# create x,y mesh
xx, yy = np.meshgrid(np.linspace(2000,2200,10), np.linspace(540,740,10))
# calculate corresponding z
# Note: does not work if normal vector is without z-component
z = (-normal[0]*xx - normal[1]*yy - d)/normal[2]

# plot the surface, data, and synthetic circle
fig = plt.figure()
ax = fig.add_subplot(211, projection='3d')
ax.scatter(xs, ys, zs, c='b', marker='o')
ax.plot_wireframe(xx,yy,z)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
bx = fig.add_subplot(212, projection='3d')
bx.scatter(xs, ys, zs, c='b', marker='o')
bx.scatter(cxTupel,cyTupel,czTupel, c='r', marker='o')
bx.set_xlabel('X Label')
bx.set_ylabel('Y Label')
bx.set_zlabel('Z Label')
plt.show()

which give a radius of 245. This is close to what the other approach gave (249). So within error margins I get the same. 平面拟合和圆近似数据

The plotted result looks reasonable. Hope this helps.

Feel like you missed some constraints in your 1st version code. The implementation could be explained as fitting a sphere to 3d points. So that's why the 2nd radius for 2nd data list is almost straight line. It's thinking like you are giving it a small circle on a large sphere.

"

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM