简体   繁体   中英

Keras: Image segmentation using grayscale masks and ImageDataGenerator class

I am currently trying to implement a convolutional network using Keras 2.1.6 (with TensorFlow as backend) and its ImageDataGenerator to segment an image using a grayscale mask. I try to use an image as input, and a mask as label. Due to a low amount of training images, and memory constraints I utilize the ImageDataGenerator class provided in Keras.

However I get this error, after changing the values provided in the Keras example to the ones described later:

File "C:\Users\XXX\Anaconda3\lib\site-packages\keras\engine\training.py", line 2223, in fit_generator
batch_size = x.shape[0]
AttributeError: 'tuple' object has no attribute 'shape'

Which, as far as I know, happens because the generator does generate a tuple, and not an array. This first happened after I changed following parameters from the standard values provided in the Keras example to the following: color_mode='grayscale' for all mask generators, and class_mode='input' due to this being recommended for autoencoders.

The Keras example can be found in here .

The dataset I am using consists of 100 images ( jpg ) and 100 corresponding grayscale masks ( png ) and can be downloaded at this link

The architecture I wanted to implement is an autoencoder/U-Net based network and it is shown in the provided code:

from keras.preprocessing import image
from keras.models import Model
from keras import optimizers 
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
from keras import initializers

image_path = 
mask_path = 
valid_image_path = 
valid_mask_path = 

img_size=160
batchsize=10
samplesize = 60
steps = samplesize / batchsize

train_datagen = image.ImageDataGenerator(shear_range=0.2,
                                        zoom_range=0.2,
                                        horizontal_flip=True)

data_gen_args = dict(rotation_range=90,
                     width_shift_range=0.1,
                     height_shift_range=0.1,
                     zoom_range=0.2)

image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)

seed = 1

image_generator = image_datagen.flow_from_directory(
    image_path,
    target_size=(img_size, img_size),
    class_mode='input',
    batch_size = batchsize,
    seed=seed)

mask_generator = mask_datagen.flow_from_directory(
    mask_path,
    target_size=(img_size, img_size),
    class_mode='input',
    color_mode = 'grayscale',
    batch_size = batchsize,
    seed=seed)

vimage_generator = image_datagen.flow_from_directory(
    valid_image_path,
    target_size=(img_size, img_size),
    class_mode='input',
    batch_size = batchsize,
    seed=seed)

vmask_generator = mask_datagen.flow_from_directory(
    valid_mask_path,
    target_size=(img_size, img_size),
    class_mode='input',
    color_mode = 'grayscale',
    batch_size = batchsize,
    seed=seed)

#Model 
input_img = Input(shape=(img_size,img_size,3))
c11 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(input_img)
mp1 = MaxPooling2D((2, 2), padding='same')(c11)
c21 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(mp1)
mp2 = MaxPooling2D((2, 2), padding='same')(c21)
c31 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(mp2)
encoded = MaxPooling2D((5, 5), padding='same')(c31)

c12 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(encoded)
us12 = UpSampling2D((5,5))(c12)
c22 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(us12)
us22 = UpSampling2D((2, 2))(c22)
c32 = Conv2D(16, (3, 3), activation='relu', padding='same', kernel_initializer=initializers.random_normal(stddev=0.01))(us22)
us32 = UpSampling2D((2, 2))(c32)
decoded = Conv2D(1, (3, 3), activation='softmax', padding='same')(us32)

model = Model(input_img, decoded)

model.compile(loss="mean_squared_error", optimizer=optimizers.Adam(),metrics=["accuracy"])
#model.summary()

#Generators, tr: training, v: validation
trgen = zip(image_generator,mask_generator)
vgen = zip(vimage_generator,vmask_generator)

model.fit_generator(
    trgen,
    steps_per_epoch= steps,
    epochs=5,
    validation_data = vgen,
    validation_steps=10)

Here is a better version of Unet, you can use this code

def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
    x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)
    x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)
    return x


def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
    y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
    y = concatenate([y, residual], axis=3)
    y = conv_block(y, nfilters)
    return y


def Unet(img_height, img_width, nclasses=3, filters=64):
# down
    input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
    conv1 = conv_block(input_layer, nfilters=filters)
    conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = conv_block(conv1_out, nfilters=filters*2)
    conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = conv_block(conv2_out, nfilters=filters*4)
    conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = conv_block(conv3_out, nfilters=filters*8)
    conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
    conv4_out = Dropout(0.5)(conv4_out)
    conv5 = conv_block(conv4_out, nfilters=filters*16)
    conv5 = Dropout(0.5)(conv5)
# up
    deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
    deconv6 = Dropout(0.5)(deconv6)
    deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
    deconv7 = Dropout(0.5)(deconv7) 
    deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
    deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
# output
    output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
    output_layer = BatchNormalization()(output_layer)
    output_layer = Activation('softmax')(output_layer)

    model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
    return model

Note if you have only two classes ie nclasses=2, you need to change

output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
output_layer = BatchNormalization()(output_layer)
output_layer = Activation('softmax')(output_layer)

to

output_layer = Conv2D(filters=2, kernel_size=(1, 1))(deconv9)
output_layer = BatchNormalization()(output_layer)
output_layer = Activation('sigmoid')(output_layer)

Now for the data generators, you can use the builtin ImageDataGenerator class here is the code from Keras docs

# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
                     featurewise_std_normalization=True,
                     rotation_range=90,
                     width_shift_range=0.1,
                     height_shift_range=0.1,
                     zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)

# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)

image_generator = image_datagen.flow_from_directory(
    'data/images',
    class_mode=None,
    seed=seed)

mask_generator = mask_datagen.flow_from_directory(
    'data/masks',
    class_mode=None,
    seed=seed)

# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)

model.fit_generator(
    train_generator,
    steps_per_epoch=2000,
    epochs=50)

Another way to go is implement your own generator by extending the Sequence class from Keras

class seg_gen(Sequence):
    def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
        self.x, self.y = x_set, y_set
        self.batch_size = batch_size
        self.samples = len(self.x)
        self.image_dir = image_dir
        self.mask_dir = mask_dir

    def __len__(self):
        return int(np.ceil(len(self.x) / float(self.batch_size)))

    def __getitem__(self, idx):
        idx = np.random.randint(0, self.samples, batch_size)
        batch_x, batch_y = [], []
        drawn = 0
        for i in idx:
            _image = image.img_to_array(image.load_img(f'{self.image_dir}/{self.x[i]}', target_size=(img_height, img_width)))/255.   
            mask = image.img_to_array(image.load_img(f'{self.mask_dir}/{self.y[i]}', grayscale=True, target_size=(img_height, img_width)))
#             mask = np.resize(mask,(img_height*img_width, classes))
            batch_y.append(mask)
            batch_x.append(_image)
        return np.array(batch_x), np.array(batch_y)

Here is a sample code to train the model

unet = Unet(256, 256, nclasses=66, filters=64)
print(unet.output_shape)
p_unet = multi_gpu_model(unet, 4)
p_unet.load_weights('models-dr/top_weights.h5')
p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
callbacks = [tb, mc, es]
train_gen = seg_gen(image_list, mask_list, batch_size)


p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)

I got good results when i had only 2 classes by using dice loss, here is the code for it

def dice_coeff(y_true, y_pred):
    smooth = 1.
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
    return score

def dice_loss(y_true, y_pred):
    loss = 1 - dice_coeff(y_true, y_pred)
    return loss

What you are trying to build is an image segmentation model and not an autoencoder. Therefore, since you have separate generators for the images and the labels (ie masks), you need to set the class_mode argument to None to prevent generator from producing any labels arrays.

Further, you need to change the activation function of last layer from softmax to sigmoid , otherwise since the softmax normalizes the sum of its input elements to 1, the output would be all ones. You can also use binary_crossentropy for the loss function as well.

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM