简体   繁体   中英

Make 0/1 character matrix from random phylogenetic tree in R?

Is it possible to generate 0/1 character matrices like those shown below right from bifurcating phylogenetic trees like those on the left. The 1 in the matrix indicates presence of a shared character that unites the clades.

This code generates nice random trees but I have no idea where to begin to turn the results into a character matrix.

library(ape) # Other package solutions are acceptable

forest <- rmtree(N = 2, n = 10, br = NULL)
plot(forest)

To be clear, I can use the following code to generate random matrices, and then plot the trees.

library(ape)
library(phangorn)

ntaxa <- 10
nchar <- ntaxa - 1

char_mat <- array(0, dim = c(ntaxa, ntaxa - 1))

for (i in 1:nchar) {
  char_mat[,i] <- replace(char_mat[,i], seq(1, (ntaxa+1)-i), 1)
}

char_mat <- char_mat[sample.int(nrow(char_mat)), # Shuffle rows 
                     sample.int(ncol(char_mat))] # and cols

# Ensure all branch lengths > 0
dist_mat <- dist.gene(char_mat) + 0.5
upgma_tree <- upgma(dist_mat)
plot.phylo(upgma_tree, "phylo")

What I want is to generate random trees, and then make the matrices from those trees. This solution does not make the right type of matrix.

Edit for clarity: I am generating binary character matrices that students can use to draw phylogenetic trees using simple parsimony. The 1 character represents homologies that unite taxa into clades. So, all rows must share one character (a 1 across all rows in one column) and some characters must be shared by only two taxa. (I'm discounting autapomorphies.)

Examples:

在此处输入图片说明

you can have a look at the rTraitDisc function in ape that is pretty straight forward:

library(ape)
## You'll need to simulate branch length!
forest <- rmtree(N = 2, n = 10)

## Generate on equal rate model character
(one_character <- rTraitDisc(forest[[1]], type = "ER", states = c(0,1)))
# t10  t7  t5  t9  t1  t4  t2  t8  t3  t6 
#   0   0   0   1   0   0   0   0   0   0 
# Levels: 0 1

## Generate a matrix of ten characters
(replicate(10, rTraitDisc(forest[[1]], type = "ER", states = c(0,1))))

#     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# t10 "0"  "0"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  
# t7  "0"  "0"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  
# t5  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t9  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t1  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t4  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t2  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t8  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t3  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t6  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"

To apply it to multiple tree, the best would be to create a lapply function like so:

## Lapply wrapper function
generate.characters <- function(tree) {
    return(replicate(10, rTraitDisc(tree, type = "ER", states = c(0,1))))
}

## Generate 10 character matrices for each tree
lapply(forest, generate.characters)

# [[1]]
#     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# t10 "0"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  
# t7  "0"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  
# t5  "0"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  
# t9  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t1  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t4  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t2  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t8  "0"  "0"  "0"  "1"  "0"  "1"  "0"  "0"  "0"  "1"  
# t3  "0"  "0"  "0"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  
# t6  "0"  "0"  "0"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  

# [[2]]
#     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# t7  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t9  "1"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t5  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t2  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t4  "0"  "1"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  
# t6  "0"  "1"  "0"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  
# t10 "0"  "1"  "1"  "0"  "1"  "1"  "0"  "0"  "0"  "1"  
# t8  "0"  "1"  "1"  "0"  "1"  "0"  "0"  "0"  "0"  "0"  
# t3  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  
# t1  "0"  "1"  "0"  "0"  "0"  "0"  "0"  "0"  "0"  "0" 

Another option is to use the sim.morpho from the dispRity package. This function reuses the rTraitDisc function but has a bit more models implemented and alllows the rates to be provided as distributions from which to sample. It also allows characters to look a bit more "realistic" without to much invariant data and insuring that the generated character "looks" like a real morphological character (like with the right amount of homoplasy, etc...).

library(dispRity)
## You're first tree
tree <- forest[[1]]
## Setting up the parameters
my_rates = c(rgamma, rate = 10, shape = 5)
my_substitutions = c(runif, 2, 2)

## HKY binary (15*50)
matrixHKY <- sim.morpho(tree, characters = 50, model = "HKY",
     rates = my_rates, substitution = my_substitutions)

## Mk matrix (15*50) (for Mkv models)
matrixMk <- sim.morpho(tree, characters = 50, model = "ER", rates = my_rates) 

## Mk invariant matrix (15*50) (for Mk models)
matrixMk <- sim.morpho(tree, characters = 50, model = "ER", rates = my_rates,
     invariant = FALSE)

## MIXED model invariant matrix (15*50)
matrixMixed <- sim.morpho(tree, characters = 50, model = "MIXED",
     rates = my_rates, substitution = my_substitutions,  invariant = FALSE,
     verbose = TRUE)

I suggest you have a read at the sim.morpho function for the proper references on how the model work or at the relevant section in the dispRity package manual .

I figured out how to make the matrix using Descendants from the phangorn package. I still have to tweak it with suitable node labels to match the example matrix in the original question, but the framework is there.

library(ape)
library(phangorn)

ntaxa <- 8
nchar <- ntaxa - 1

tree <- rtree(ntaxa, br = NULL)

# Gets descendants, but removes the first ntaxa elements,
# which are the individual tips
desc <- phangorn::Descendants(tree)[-seq(1, ntaxa)]

char_mat <- array(0, dim = c(ntaxa, nchar))

for (i in 1:nchar) {
  char_mat[,i] <- replace(char_mat[,i], y <- desc[[i]], 1)
}

rownames(char_mat) <- tree$tip.label
char_mat
#>    [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> t6    1    1    0    0    0    0    0
#> t3    1    1    1    0    0    0    0
#> t7    1    1    1    1    0    0    0
#> t2    1    1    1    1    1    0    0
#> t5    1    1    1    1    1    0    0
#> t1    1    0    0    0    0    1    1
#> t8    1    0    0    0    0    1    1
#> t4    1    0    0    0    0    1    0

plot(tree)

Created on 2019-01-28 by the reprex package (v0.2.1)

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM