简体   繁体   中英

How to pitchshift an audio buffer in Tone.js?

I would like to pitchshift audio in Javascript and I thought the easiest way would be Tone.js ( https://tonejs.github.io/docs/r13/PitchShift ), but my implementation is not playing any sound, but there's no errors. What am I doing wrong?

HTML (to load an audio file)

<html>
<div id="wrapper">
    <button onclick="loadTheTrack()"></button>
</div>
<script src="Tone.js"></script>
<script src="seebelow.js"></script>
</html>

Javascript

var AudioContext = window.AudioContext || window.webkitAudioContext;
var audioCtx = new AudioContext();
Tone.setContext(audioCtx);
var audioDatas=[];

function loadTheTrack() {
    var input = document.createElement('input');
    input.type = 'file';
    input.style = "display:none";
    input.onchange = function (e) {
        var file = e.target.files[0];
        console.log(file);
        var reader = new FileReader();
        reader.onload = function () {
            console.log("decoding audio data with" + this.result);
            audioCtx.decodeAudioData(this.result, (decodedData) => {
                // note: on older systems, may have to use deprecated noteOn(time);
                audioDatas.push(decodedData);
                doIt();
            }, (e) => {
                alert('Sorry this browser unable to download this file... try Chrome');
            });
        }
        reader.readAsArrayBuffer(file);
    }
    document.getElementById("wrapper").appendChild(input);
    input.click();
}

function generateAudioOffline(){
    return Tone.Offline(function(Transport){

        var pitchShift = new Tone.PitchShift({
            pitch: -2
        }).toMaster();

        var tonbuf = new Tone.BufferSource(audioDatas[0]);
        tonbuf.connect(pitchShift);

        Transport.bpm.value = 106;
        Transport.start();
    }, 7);
}


function doIt() {
    var buffer = generateAudioOffline().then(decodeBuffer => {
        console.log(decodeBuffer);
        var source = audioCtx.createBufferSource(); // creates a sound source
        source.buffer = decodeBuffer._buffer;       // tell the source which sound to play
        source.connect(audioCtx.destination);       // connect the source to the context's destination (the speakers)
        console.log('starting');
        source.start(0);                            // play the source now
    });
}

So I gave up on ToneJS and just translated a pitch shifter from c# ( https://sites.google.com/site/mikescoderama/pitch-shifting )

<!-- Translated from https://sites.google.com/site/mikescoderama/pitch-shifting to javascript By Seth Kitchen 2019-->
<html>
<div id="wrapper">
    <p>PitchShift factor value which is between 0.5 (one octave down) and 2. (one octave up)</p>
    <input id="shiftAmount" type="text" value=".5" />
    <button onclick="loadTheTrack()">Pick a file and then wait for the pitch shift to happen! </button>
    <p id="status">Waiting for you to pick file.</p>
</div>
<script>

/****************************************************************************
*
* NAME: PitchShift
* VERSION: 1.2
* HOME URL: http://www.dspdimension.com
* KNOWN BUGS: none
*
* SYNOPSIS: Routine for doing pitch shifting while maintaining
* duration using the Short Time Fourier Transform.
*
* DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
* (one octave down) and 2. (one octave up). A value of exactly 1 does not change
* the pitch. numSampsToProcess tells the routine how many samples in indata[0...
* numSampsToProcess-1] should be pitch shifted and moved to outdata[0 ...
* numSampsToProcess-1]. The two buffers can be identical (ie. it can process the
* data in-place). fftFrameSize defines the FFT frame size used for the
* processing. Typical values are 1024, 2048 and 4096. It may be any value <=
* MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
* oversampling factor which also determines the overlap between adjacent STFT
* frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
* recommended for best quality. sampleRate takes the sample rate for the signal 
* in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in 
* indata[] should be in the range [-1.0, 1.0), which is also the output range 
* for the data, make sure you scale the data accordingly (for 16bit signed integers
* you would have to divide (and multiply) by 32768). 
*
* COPYRIGHT 1999-2006 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
*
*                       The Wide Open License (WOL)
*
* Permission to use, copy, modify, distribute and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice and this license appear in all source copies. 
* THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
* ANY KIND. See http://www.dspguru.com/wol.htm for more information.
*
*****************************************************************************/

    const MAX_FRAME_LENGTH = 16000;
    var gInFIFO=new Array(MAX_FRAME_LENGTH).fill(0.0);
    var gOutFIFO=new Array(MAX_FRAME_LENGTH).fill(0.0);
    var gFFTworksp = new Array(2*MAX_FRAME_LENGTH).fill(0.0);
    var gLastPhase = new Array(MAX_FRAME_LENGTH/2+1).fill(0.0);
    var gSumPhase = new Array(MAX_FRAME_LENGTH/2+1).fill(0.0);
    var gOutputAccum = new Array(2*MAX_FRAME_LENGTH).fill(0.0);
    var gAnaFreq = new Array(MAX_FRAME_LENGTH).fill(0.0);
    var gAnaMagn = new Array(MAX_FRAME_LENGTH).fill(0.0);
    var gSynFreq = new Array(MAX_FRAME_LENGTH).fill(0.0);
    var gSynMagn =new Array(MAX_FRAME_LENGTH).fill(0.0);
    var gRover=0;
    var AudioContext = window.AudioContext || window.webkitAudioContext;
    var audioCtx = new AudioContext();

    function loadTheTrack()
    {
        var input = document.createElement('input');
        input.type = 'file';
        input.style = "display:none";
        input.onchange = function (e) {
            var file = e.target.files[0];
            console.log(file);
            var reader = new FileReader();
            reader.onload = function () {
                console.log("decoding audio data with" + this.result);
                document.getElementById('status').innerText="Pitch Shifting (yeah it takes a min)....";
                audioCtx.decodeAudioData(this.result, (decodedData) => {
                    var in_data_l=decodedData.getChannelData(0);
                    console.log(in_data_l);
                    var in_data_r=decodedData.getChannelData(1);
                    console.log(in_data_r);
                    var shiftAmount=document.getElementById("shiftAmount").value;
                    console.log(shiftAmount);
                    in_data_l= PitchShift(shiftAmount, in_data_l.length, 1024, 10, audioCtx.sampleRate, in_data_l);
                    console.log(in_data_l);
                    in_data_r= PitchShift(shiftAmount, in_data_l.length, 1024, 10, audioCtx.sampleRate, in_data_r);
                    decodedData.copyToChannel(in_data_l, 0);
                    decodedData.copyToChannel(in_data_r, 1);
                    var source = audioCtx.createBufferSource(); // creates a sound source
                    source.buffer = decodedData;       // tell the source which sound to play
                    source.connect(audioCtx.destination);       // connect the source to the context's destination (the speakers)
                    console.log('starting');
                    document.getElementById('status').innerText="Playing...";
                    source.start(0);                            // play the source now
                }, (e) => {
                    alert('Sorry this browser unable to download this file... try Chrome');
                });
            }
            reader.readAsArrayBuffer(file);
        }
        document.getElementById("wrapper").appendChild(input);
        input.click();
    }

    function PitchShift(/* float[*/ pitchShift, /* long */ numSampsToProcess, /* long */ fftFrameSize,
            /* long */ osamp, /* float[*/ sampleRate, /* float[] */ indata) {
            /* double */ var magn, phase, tmp, window, real, imag;
            /* double */ var freqPerBin, expct;
            /* long */ var i, k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;


            /* float[] */var outdata = indata;
        /* set up some handy variables */
        fftFrameSize2 = Math.trunc(fftFrameSize / 2);
        stepSize = Math.trunc(fftFrameSize / osamp);
        freqPerBin = sampleRate / /* (double) */fftFrameSize;
        expct = 2.0 * Math.PI * /* (double) */stepSize / /* (double) */fftFrameSize;
        inFifoLatency = Math.trunc(fftFrameSize - stepSize);
        if (gRover == 0) gRover = inFifoLatency;


        /* main processing loop */
        for (i = 0; i < numSampsToProcess; i++) {

            /* As long as we have not yet collected enough data just read in */
            gInFIFO[gRover] = indata[i];
            outdata[i] = gOutFIFO[gRover - inFifoLatency];
            gRover++;

            /* now we have enough data for processing */
            if (gRover >= fftFrameSize) {
                gRover = inFifoLatency;

                /* do windowing and re,im interleave */
                for (k = 0; k < fftFrameSize; k++) {
                    window = -.5 * Math.cos(2.0 * Math.PI * /* (double) */k / /* (double) */fftFrameSize) + .5;
                    gFFTworksp[2 * k] = /* (float) */(gInFIFO[k] * window);
                    gFFTworksp[2 * k + 1] = 0.0;
                }


                /* ***************** ANALYSIS ******************* */
                /* do transform */
                ShortTimeFourierTransform(gFFTworksp, fftFrameSize, -1);

                /* this is the analysis step */
                for (k = 0; k <= fftFrameSize2; k++) {

                    /* de-interlace FFT buffer */
                    real = gFFTworksp[2 * k];
                    imag = gFFTworksp[2 * k + 1];

                    /* compute magnitude and phase */
                    magn = 2.0 * Math.sqrt(real * real + imag * imag);
                    phase = Math.atan2(imag, real);

                    /* compute phase difference */
                    tmp = phase - gLastPhase[k];
                    gLastPhase[k] = /* (float) */phase;

                    /* subtract expected phase difference */
                    tmp -= /* (double) */k * expct;

                    /* map delta phase into +/- Pi interval */
                    qpd = /* (long) */Math.trunc(tmp / Math.PI);
                    if (qpd >= 0) qpd += qpd & 1;
                    else qpd -= qpd & 1;
                    tmp -= Math.PI * /* (double) */qpd;

                    /* get deviation from bin frequency from the +/- Pi interval */
                    tmp = osamp * tmp / (2.0 * Math.PI);

                    /* compute the k-th partials' true frequency */
                    tmp = /* (double) */k * freqPerBin + tmp * freqPerBin;

                    /* store magnitude and true frequency in analysis arrays */
                    gAnaMagn[k] = /* (float) */magn;
                    gAnaFreq[k] = /* (float) */tmp;

                }

                /* ***************** PROCESSING ******************* */
                /* this does the actual pitch shifting */
                for (var zero = 0; zero < fftFrameSize; zero++) {
                    gSynMagn[zero] = 0;
                    gSynFreq[zero] = 0;
                }

                for (k = 0; k <= fftFrameSize2; k++) {
                    index = /* (long) */Math.trunc(k * pitchShift);
                    if (index <= fftFrameSize2) {
                        gSynMagn[index] += gAnaMagn[k];
                        gSynFreq[index] = gAnaFreq[k] * pitchShift;
                    }
                }

                /* ***************** SYNTHESIS ******************* */
                /* this is the synthesis step */
                for (k = 0; k <= fftFrameSize2; k++) {

                    /* get magnitude and true frequency from synthesis arrays */
                    magn = gSynMagn[k];
                    tmp = gSynFreq[k];

                    /* subtract bin mid frequency */
                    tmp -= /* (double) */k * freqPerBin;

                    /* get bin deviation from freq deviation */
                    tmp /= freqPerBin;

                    /* take osamp into account */
                    tmp = 2.0 * Math.PI * tmp / osamp;

                    /* add the overlap phase advance back in */
                    tmp += /* (double) */k * expct;

                    /* accumulate delta phase to get bin phase */
                    gSumPhase[k] += /* (float) */tmp;
                    phase = gSumPhase[k];

                    /* get real and imag part and re-interleave */
                    gFFTworksp[2 * k] = /* (float) */(magn * Math.cos(phase));
                    gFFTworksp[2 * k + 1] = /* (float) */(magn * Math.sin(phase));
                }

                /* zero negative frequencies */
                for (k = fftFrameSize + 2; k < 2 * fftFrameSize; k++) gFFTworksp[k] = 0.0;

                /* do inverse transform */
                ShortTimeFourierTransform(gFFTworksp, fftFrameSize, 1);

                /* do windowing and add to output accumulator */
                for (k = 0; k < fftFrameSize; k++) {
                    window = -.5 * Math.cos(2.0 * Math.PI * /* (double) */k / /* (double) */fftFrameSize) + .5;
                    gOutputAccum[k] += /* (float) */(2.0 * window * gFFTworksp[2 * k] / (fftFrameSize2 * osamp));
                }
                for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k];

                /* shift accumulator */
                //memmove(gOutputAccum, gOutputAccum + stepSize, fftFrameSize * sizeof(float));
                for (k = 0; k < fftFrameSize; k++) {
                    gOutputAccum[k] = gOutputAccum[k + stepSize];
                }

                /* move input FIFO */
                for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k + stepSize];
            }
        }
        return outdata;
    }

    function ShortTimeFourierTransform(/* float[] */ fftBuffer, /* long */ fftFrameSize, /* long */ sign) {
        /* float */ var wr, wi, arg, temp;
        /* float */ var tr, ti, ur, ui;
        /* long */ var i, bitm, j, le, le2, k;

        for (i = 2; i < 2 * fftFrameSize - 2; i += 2) {
            for (bitm = 2, j = 0; bitm < 2 * fftFrameSize; bitm <<= 1) {
                if ((i & bitm) != 0) j++;
                j <<= 1;
            }
            if (i < j) {
                temp = fftBuffer[i];
                fftBuffer[i] = fftBuffer[j];
                fftBuffer[j] = temp;
                temp = fftBuffer[i + 1];
                fftBuffer[i + 1] = fftBuffer[j + 1];
                fftBuffer[j + 1] = temp;
            }
        }
        /* long */ var max = /* (long) */Math.trunc(Math.log(fftFrameSize) / Math.log(2.0) + .5);
        for (k = 0, le = 2; k < max; k++) {
            le <<= 1;
            le2 = le >> 1;
            ur = 1.0;
            ui = 0.0;
            arg = /* (float) */Math.PI / (le2 >> 1);
            wr = /* (float) */Math.cos(arg);
            wi = /* (float) */(sign * Math.sin(arg));
            for (j = 0; j < le2; j += 2) {

                for (i = j; i < 2 * fftFrameSize; i += le) {
                    tr = fftBuffer[i + le2] * ur - fftBuffer[i + le2 + 1] * ui;
                    ti = fftBuffer[i + le2] * ui + fftBuffer[i + le2 + 1] * ur;
                    fftBuffer[i + le2] = fftBuffer[i] - tr;
                    fftBuffer[i + le2 + 1] = fftBuffer[i + 1] - ti;
                    fftBuffer[i] += tr;
                    fftBuffer[i + 1] += ti;

                }
                tr = ur * wr - ui * wi;
                ui = ur * wi + ui * wr;
                ur = tr;
            }
        }
    }

</script>

</html>

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM