简体   繁体   中英

PyTorch DQN code does not solve OpenAI CartPole

The code is from DeepLizard tutorials ; it shows that the agent can only achieve 100 episode moving average of 80-120 seconds before resetting for the next episode. OpenAI gym considers 195 average is solving it.

the agent takes in an image frame instead of the observation space of 4.

can you please help me what weakness is happening that I am not able to discover,

thank you

import gym
import math
import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T    

is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython: from IPython import display

batch_size = 256
gamma = 0.999
eps_start = 1
eps_end = 0.01
eps_decay = 0.001
target_update = 10
memory_size = 50000
lr = 0.001
num_episodes = 1000


class DQN(nn.Module):
    def __init__(self, img_height, img_width):
        super().__init__()
        self.fc1 = nn.Linear(in_features=img_height*img_width*3, out_features=24)   
        self.fc2 = nn.Linear(in_features=24, out_features=32)
        self.out = nn.Linear(in_features=32, out_features=2)

    def forward(self, t):
        t = t.flatten(start_dim=1)
        t = F.relu(self.fc1(t))
        t = F.relu(self.fc2(t))
        t = self.out(t)
        return t   


Experience = namedtuple(
    'Experience',
    ('state', 'action', 'next_state', 'reward')
)

class ReplayMemory():
    def __init__(self, capacity):
        self.capacity = capacity
        self.memory = []
        self.push_count = 0

    def push(self, experience):
        if len(self.memory) < self.capacity:
            self.memory.append(experience)
        else:
            self.memory[self.push_count % self.capacity] = experience
        self.push_count += 1

    def sample(self, batch_size):
        return random.sample(self.memory, batch_size)

    def can_provide_sample(self, batch_size):
        return len(self.memory) >= batch_size   


class EpsilonGreedyStrategy():
    def __init__(self, start, end, decay):
        self.start = start
        self.end = end
        self.decay = decay

    def get_exploration_rate(self, current_step):
        return self.end + (self.start - self.end) * \
            math.exp(-1. * current_step * self.decay)

class Agent():
    def __init__(self, strategy, num_actions, device):
        self.current_step = 0
        self.strategy = strategy
        self.num_actions = num_actions
        self.device = device

    def select_action(self, state, policy_net):
        rate = self.strategy.get_exploration_rate(self.current_step)
        self.current_step += 1

        if rate > random.random():
            action = random.randrange(self.num_actions)
            return torch.tensor([action]).to(self.device) # explore      
        else:
            with torch.no_grad():
                return policy_net(state).argmax(dim=1).to(self.device) # exploit


class CartPoleEnvManager():
    def __init__(self, device):
        self.device = device
        self.env = gym.make('CartPole-v0').unwrapped
        self.env.reset()
        self.current_screen = None
        self.done = False

    def reset(self):
        self.env.reset()
        self.current_screen = None

    def close(self):
        self.env.close()

    def render(self, mode='human'):
        return self.env.render(mode)

    def num_actions_available(self):
        return self.env.action_space.n

    def take_action(self, action):        
        _, reward, self.done, _ = self.env.step(action.item())
        return torch.tensor([reward], device=self.device)

    def just_starting(self):
        return self.current_screen is None

    def get_state(self):
        if self.just_starting() or self.done:
            self.current_screen = self.get_processed_screen()
            black_screen = torch.zeros_like(self.current_screen)
            return black_screen
        else:
            s1 = self.current_screen
            s2 = self.get_processed_screen()
            self.current_screen = s2
            return s2 - s1

    def get_screen_height(self):
        screen = self.get_processed_screen()
        return screen.shape[2]

    def get_screen_width(self):
        screen = self.get_processed_screen()
        return screen.shape[3]

    def get_processed_screen(self):
        screen = self.render('rgb_array').transpose((2, 0, 1)) # PyTorch expects CHW
        screen = self.crop_screen(screen)
        return self.transform_screen_data(screen)

    def crop_screen(self, screen):
        screen_height = screen.shape[1]

        # Strip off top and bottom
        top = int(screen_height * 0.4)
        bottom = int(screen_height * 0.8)
        screen = screen[:, top:bottom, :]
        return screen

    def transform_screen_data(self, screen):       
        # Convert to float, rescale, convert to tensor
        screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
        screen = torch.from_numpy(screen)

        # Use torchvision package to compose image transforms
        resize = T.Compose([
            T.ToPILImage()
            ,T.Resize((40,90))
            ,T.ToTensor()
        ])

        return resize(screen).unsqueeze(0).to(self.device) # add a batch dimension (BCHW)

class QValues():
    device = torch.device("cpu")

    @staticmethod
    def get_current(policy_net, states, actions):
        return policy_net(states).gather(dim=1, index=actions.unsqueeze(-1))

    @staticmethod        
    def get_next(target_net, next_states):                
        final_state_locations = next_states.flatten(start_dim=1) \
            .max(dim=1)[0].eq(0).type(torch.bool)
        non_final_state_locations = (final_state_locations == False)
        non_final_states = next_states[non_final_state_locations]
        batch_size = next_states.shape[0]
        values = torch.zeros(batch_size).to(QValues.device)
        values[non_final_state_locations] = target_net(non_final_states).max(dim=1)[0].detach()
        return values


def plot(values, moving_avg_period):
    plt.figure(2)
    plt.clf()        
    plt.title('Training...')
    plt.xlabel('Episode')
    plt.ylabel('Duration')
    plt.plot(values)

    moving_avg = get_moving_average(moving_avg_period, values)
    plt.plot(moving_avg)    
    plt.pause(0.001)
    print("Episode", len(values), "\n", \
        moving_avg_period, "episode moving avg:", moving_avg[-1])
    if is_ipython: display.clear_output(wait=True)


def get_moving_average(period, values):
    values = torch.tensor(values, dtype=torch.float)
    if len(values) >= period:
        moving_avg = values.unfold(dimension=0, size=period, step=1) \
            .mean(dim=1).flatten(start_dim=0)
        moving_avg = torch.cat((torch.zeros(period-1), moving_avg))
        return moving_avg.numpy()
    else:
        moving_avg = torch.zeros(len(values))
        return moving_avg.numpy()


def extract_tensors(experiences):
    # Convert batch of Experiences to Experience of batches
    batch = Experience(*zip(*experiences))

    t1 = torch.cat(batch.state)
    t2 = torch.cat(batch.action)
    t3 = torch.cat(batch.reward)
    t4 = torch.cat(batch.next_state)

    return (t1,t2,t3,t4)

device = torch.device("cpu")
em = CartPoleEnvManager(device)
strategy = EpsilonGreedyStrategy(eps_start, eps_end, eps_decay)
agent = Agent(strategy, em.num_actions_available(), device)
memory = ReplayMemory(memory_size)

policy_net = DQN(em.get_screen_height(), em.get_screen_width()).to(device)
target_net = DQN(em.get_screen_height(), em.get_screen_width()).to(device)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.Adam(params=policy_net.parameters(), lr=lr)

episode_durations = []
for episode in range(num_episodes):
    em.reset()
    state = em.get_state()

    for timestep in count():
        action = agent.select_action(state, policy_net)
        reward = em.take_action(action)
        next_state = em.get_state()
        memory.push(Experience(state, action, next_state, reward))
        state = next_state

        if memory.can_provide_sample(batch_size):
            experiences = memory.sample(batch_size)
            states, actions, rewards, next_states = extract_tensors(experiences)

            current_q_values = QValues.get_current(policy_net, states, actions)
            next_q_values = QValues.get_next(target_net, next_states)
            target_q_values = (next_q_values * gamma) + rewards

            loss = F.mse_loss(current_q_values, target_q_values.unsqueeze(1))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        if em.done:
            episode_durations.append(timestep)
            plot(episode_durations, 100)
            break

    if episode % target_update == 0:
        target_net.load_state_dict(policy_net.state_dict())

em.close()


You are updating your target_net after N of EPISODES, this slows down the progress significantly and can hinder reaching the optimal policy. Go on and try to update your target_net after N timesteps. Good luck!

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM