简体   繁体   中英

How to use Gekko to solve for optimal control for a reusable reentry vehicle

I am seeking to find optimal control (aoa and bank angle) to maximize cross range for a shuttle type reentry vehicle using Gekko. Below is my code currently and I am getting a "Solution not found" with "EXIT: Maximum Number of Iterations Exceeded". The simulation assumes a point mass with a non-rotating earth frame. The EOMS are 6 coupled, non-linear ODEs. I have tried using different solvers, implementing/removing state and control constraints, increasing maximum number of iterations, etc. I am not confident with my setup and implementation of the problem in Gekko and am hoping for some feedback on what I can try next. I have tried to follow the setup and layouts in APMonitor's Example 11. Optimal Control with Integral Objective , Inverted Pendulum Optimal Control , and Example 13. Optimal Control: Minimize Final Time . Solutions I'm seeking are below.

Any help is very much appreciated!

from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import math

pi = math.pi

########################
######FRONT MATTER######
########################
m = GEKKO() # initialize GEKKO
nt = 2501 #simulation time is 2500 seconds
tfin = 2500
m.time = np.linspace(0,tfin,nt) #time array

#==================#
#PARAMS
#==================#
Re  = m.Param(value = 6371203.92)           # radius of the earth, m
S   = m.Param(value = 249.9091776)          # vehicle surface area, m^2
cl0 = m.Param(value = -0.2070)              # coeff lift param 1
cl1 = m.Param(value = 1.6756)               # coeff lift param 2
cd0 = m.Param(value = 0.0785)               # coeff drag param 1
cd1 = m.Param(value = -0.3529)              # coeff drag param 2
cd2 = m.Param(value = 2.0400)               # coeff drag param 3
H   = m.Param(value = 7254.24)              # density scale height, m
rho0= m.Param(value = 1.225570827014494)    # sea level atmospheric density, kg/m^3
mu  = m.Param(value = 3.986031954093051e14) #earth gravitational param, m^3/s^2
mass= m.Param(value = 92079.2525560557)     #vehicle mass, kg

#===============================#
#BOUNDARY CONDITIONS
#===============================#
t0     = 0
alt0   = 79248
rad0   = alt0+Re
altf   = 24384
radf   = altf+Re
lon0   = 0
lat0   = 0
speed0 = +7802.88
speedf = +762
fpa0   = -1*pi/180
fpaf   = -5*pi/180
azi0   = +90*pi/180
azif   = -90*pi/180

#===============================#
#LIMITS ON VARIABLES
#===============================#
tfMin = 0;              tfMax = 3000;
radMin = Re;            radMax = rad0;
lonMin = -pi;           lonMax = -lonMin;
latMin = -70*pi/180;    latMax = -latMin;
speedMin = 10;          speedMax = 45000;
fpaMin = -80*pi/180;    fpaMax =  80*pi/180;
aziMin = -180*pi/180;   aziMax =  180*pi/180;
aoaMin = -90*pi/180;    aoaMax = -aoaMin;
bankMin = -90*pi/180;   bankMax =   1*pi/180;

#===============================#
#VARIABLES
#===============================#

#state variables and bounds
rad = m.Var(value=rad0, lb=radMin, ub=radMax)       # radius, m
lon = m.Var(value=lon0, lb=lonMin, ub=lonMax)       # longitude, rad
lat = m.Var(value=lat0, lb=latMin, ub=latMax)       # latitude, rad
vel = m.Var(value=speed0, lb=speedMin, ub=speedMax) # velocity, m/sec
fpa = m.Var(value=fpa0, lb=fpaMin, ub=fpaMax)       # flight path angle, rad
azi = m.Var(value=azi0, lb=aziMin, ub=aziMax)       # azimuth angle, rad

#control variables
aoa     = m.MV(value=-20, lb=aoaMin, ub=aoaMax)    # angle of attack, rad
aoa.STATUS = 1
aoa.DCOST = 1e-2
bank    = m.MV(value=0, lb=bankMin, ub=bankMax)    # bank angle, rad
bank.STATUS = 1
bank.DCOST = 1e-2

#===============================#
#INTERMEDIATE VARIABLES
#===============================#
altitude = m.Intermediate(rad - Re)
CD       = m.Intermediate(cd0+cd1*aoa+cd2*aoa**2)
rho      = m.Intermediate(rho0*m.exp(-altitude/H))
CL       = m.Intermediate(cl0+cl1*aoa)
q        = m.Intermediate(0.5*rho*vel**2)
D        = m.Intermediate(q*S*CD/mass)
L        = m.Intermediate(q*S*CL/mass)
gravity  = m.Intermediate(mu/rad**2)

#===============================#
#EOMS
#===============================#

p = np.zeros(nt) # mark final time point
p[-1] = 1.0
final = m.Param(value=p)

m.Equation(rad.dt() == vel*m.sin(fpa))
m.Equation((rad*m.cos(lat))*lon.dt() == vel*m.cos(fpa)*m.sin(azi))
m.Equation(rad*lat.dt() == vel*m.cos(fpa)*m.cos(azi))
m.Equation(vel.dt() == -D-gravity*m.sin(fpa))
m.Equation(vel*fpa.dt() == (L*m.cos(bank)-m.cos(fpa)*(gravity-vel**2/rad)))
m.Equation(vel*azi.dt() == (L*m.sin(bank)/m.cos(fpa)+vel**2*m.cos(fpa)*m.sin(azi)*m.tan(lat)/rad))

#===============================#
#OPTIMIZATION SOLVER
#===============================#
m.Obj(-lat*final)


# m.options.SOLVER = 3
# m.options.IMODE = 6
# m.solve(disp=True)

m.options.MAX_ITER = 500
m.options.IMODE = 6
# m.options.NODES = 3
# m.options.MV_TYPE = 1
m.options.SOLVER = 3
# m.open_folder()
m.solve()

The solution should look something like this for altitude, velocity, AOA and bank angle: Altitude Velocity AngleofAttack Bank

I got a successful solution by decreasing the final time (max=0.04 for successful solution) and rearranging the equations to avoid a possible divide-by-zero:

m.Equation(rad.dt() == vel*m.sin(fpa))
m.Equation((rad*m.cos(lat))*lon.dt() == vel*m.cos(fpa)*m.sin(azi))
m.Equation(rad*lat.dt() == vel*m.cos(fpa)*m.cos(azi))
m.Equation(vel.dt() == -D-gravity*m.sin(fpa))
m.Equation(vel*fpa.dt() == (L*m.cos(bank)-m.cos(fpa)*(gravity-vel**2/rad)))
m.Equation(m.cos(fpa)*rad*vel*azi.dt() == \
           (L*m.sin(bank)*rad+vel**2*(m.cos(fpa))**2*m.sin(azi)*m.tan(lat)))

Starting with a small time period and observing the states can help to troubleshoot the model.

图表

from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import math

pi = math.pi

########################
######FRONT MATTER######
########################
m = GEKKO() # initialize GEKKO
nt = 101 # 2501 #simulation time is 2500 seconds
tfin = 0.04
m.time = np.linspace(0,tfin,nt) #time array

#==================#
#PARAMS
#==================#
Re  = m.Param(value = 6371203.92)           # radius of the earth, m
S   = m.Param(value = 249.9091776)          # vehicle surface area, m^2
cl0 = m.Param(value = -0.2070)              # coeff lift param 1
cl1 = m.Param(value = 1.6756)               # coeff lift param 2
cd0 = m.Param(value = 0.0785)               # coeff drag param 1
cd1 = m.Param(value = -0.3529)              # coeff drag param 2
cd2 = m.Param(value = 2.0400)               # coeff drag param 3
H   = m.Param(value = 7254.24)              # density scale height, m
rho0= m.Param(value = 1.225570827014494)    # sea level atmospheric density, kg/m^3
mu  = m.Param(value = 3.986031954093051e14) #earth gravitational param, m^3/s^2
mass= m.Param(value = 92079.2525560557)     #vehicle mass, kg

#===============================#
#BOUNDARY CONDITIONS
#===============================#
t0     = 0
alt0   = 79248
rad0   = alt0+Re
altf   = 24384
radf   = altf+Re
lon0   = 0
lat0   = 0
speed0 = +7802.88
speedf = +762
fpa0   = -1*pi/180
fpaf   = -5*pi/180
azi0   = +90*pi/180
azif   = -90*pi/180

#===============================#
#LIMITS ON VARIABLES
#===============================#
tfMin = 0;              tfMax = 3000;
radMin = Re;            radMax = rad0;
lonMin = -pi;           lonMax = -lonMin;
latMin = -70*pi/180;    latMax = -latMin;
speedMin = 10;          speedMax = 45000;
fpaMin = -80*pi/180;    fpaMax =  80*pi/180;
aziMin = -180*pi/180;   aziMax =  180*pi/180;
aoaMin = -90*pi/180;    aoaMax = -aoaMin;
bankMin = -90*pi/180;   bankMax =   1*pi/180;

#===============================#
#VARIABLES
#===============================#

#state variables and bounds
rad = m.Var(value=rad0, lb=radMin, ub=radMax)       # radius, m
lon = m.Var(value=lon0, lb=lonMin, ub=lonMax)       # longitude, rad
lat = m.Var(value=lat0, lb=latMin, ub=latMax)       # latitude, rad
vel = m.Var(value=speed0, lb=speedMin, ub=speedMax) # velocity, m/sec
fpa = m.Var(value=fpa0, lb=fpaMin, ub=fpaMax)       # flight path angle, rad
azi = m.Var(value=azi0, lb=aziMin, ub=aziMax)       # azimuth angle, rad

#control variables
aoa     = m.MV(value=-20, lb=aoaMin, ub=aoaMax)    # angle of attack, rad
aoa.STATUS = 1
bank    = m.MV(value=0, lb=bankMin, ub=bankMax)    # bank angle, rad
bank.STATUS = 1

#===============================#
#INTERMEDIATE VARIABLES
#===============================#
altitude = rad - Re
CD       = cd0+cd1*aoa+cd2*aoa**2
rho      = rho0*m.exp(-altitude/H)
CL       = cl0+cl1*aoa
q        = 0.5*rho*vel**2
D        = q*S*CD/mass
L        = q*S*CL/mass
gravity  = mu/rad**2

#===============================#
#EOMS
#===============================#

p = np.zeros(nt) # mark final time point
p[-1] = 1.0
final = m.Param(value=p)

m.Equation(rad.dt() == vel*m.sin(fpa))
m.Equation((rad*m.cos(lat))*lon.dt() == vel*m.cos(fpa)*m.sin(azi))
m.Equation(rad*lat.dt() == vel*m.cos(fpa)*m.cos(azi))
m.Equation(vel.dt() == -D-gravity*m.sin(fpa))
m.Equation(vel*fpa.dt() == (L*m.cos(bank)-m.cos(fpa)*(gravity-vel**2/rad)))
m.Equation(m.cos(fpa)*rad*vel*azi.dt() == \
           (L*m.sin(bank)*rad+vel**2*(m.cos(fpa))**2*m.sin(azi)*m.tan(lat)))

#===============================#
#OPTIMIZATION SOLVER
#===============================#
m.Maximize(lat*final)
m.options.SOLVER = 3
m.options.IMODE = 6
m.solve(disp=True)

plt.subplot(4,2,1)
plt.plot(m.time,rad.value,label='rad')
plt.legend()
plt.subplot(4,2,2)
plt.plot(m.time,lon.value,label='lon')
plt.legend()
plt.subplot(4,2,3)
plt.plot(m.time,lat.value,label='lat')
plt.legend()
plt.subplot(4,2,4)
plt.plot(m.time,vel.value,label='vel')
plt.legend()
plt.subplot(4,2,5)
plt.plot(m.time,fpa.value,label='fpa')
plt.legend()
plt.subplot(4,2,6)
plt.plot(m.time,azi.value,label='azi')
plt.legend()
plt.subplot(4,2,7)
plt.plot(m.time,aoa.value,label='aoa')
plt.xlabel('Time')
plt.legend()
plt.subplot(4,2,8)
plt.plot(m.time,bank.value,label='bank')
plt.xlabel('Time')
plt.legend()
plt.show()

A suggestion is to turn off the degrees of freedom to verify the solution ( STATUS=0 ) with smaller time horizons. Additional constraints may also be needed to keep the trigonometric functions in the -2 pi to 2 pi region. There is additional information on initializing challenging problems:

Success.. Thank you for your feedback and pointers @John Hedengren. After incorporating what I learned here and reinstating the bounds on the states I was able successfully use Gekko to produce an answer consistent with previous solutions. Very excited about Gekko and the potential here!

穿梭型车辆再入状态与控制

The technical post webpages of this site follow the CC BY-SA 4.0 protocol. If you need to reprint, please indicate the site URL or the original address.Any question please contact:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM