繁体   English   中英

在二叉搜索树中找到第n个节点

[英]Finding nth node in binary search tree

大家好,我正在使用二进制搜索树进行类项目。 我在查找二进制搜索树的第n个节点时遇到麻烦。 我了解使用顺序遍历和使用计数器的概念,但是我很难将其放入代码中。 如果有人可以帮助,将不胜感激。 很抱歉输入长代码。 有问题的方法是nthElement(int n, BinaryNode<AnyType> t)方法。 我不确定如何增加计数器。

package proj2;

// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x )       --> Insert x
// void remove( x )       --> Remove x
// boolean contains( x )  --> Return true if x is present
// Comparable findMin( )  --> Return smallest item
// Comparable findMax( )  --> Return largest item
// boolean isEmpty( )     --> Return true if empty; else false
// void makeEmpty( )      --> Remove all items
// void printTree( )      --> Print tree in sorted order
// ******************ERRORS********************************
// Throws UnderflowException as appropriate

/**
 * Implements an unbalanced binary search tree.
 * Note that all "matching" is based on the compareTo method.
 * @author Mark Allen Weiss
 */
public class BinarySearchTree<AnyType extends Comparable<? super AnyType>>
{
/** The tree root. */
private BinaryNode<AnyType> root;

/** The tree size. */
private int treeSize;

/**
 * Construct the tree.
 */
public BinarySearchTree( )
{
    root = null;
}

/**
 * Insert into the tree; duplicates are ignored.
 * @param x the item to insert.
 */
public void insert( AnyType x )
{
    root = insert( x, root );
}

/**
 * Remove from the tree. Nothing is done if x is not found.
 * @param x the item to remove.
 */
public void remove( AnyType x )
{
    root = remove( x, root );
}

/**
 * Find the smallest item in the tree.
 * @return smallest item or null if empty.
 */
public AnyType findMin( )
{
    if( isEmpty( ) )
        throw new UnderflowException( );
    return findMin( root ).element;
}

/**
 * Find the largest item in the tree.
 * @return the largest item of null if empty.
 */
public AnyType findMax( )
{
    if( isEmpty( ) )
        throw new UnderflowException( );
    return findMax( root ).element;
}

/**
 * Find an item in the tree.
 * @param x the item to search for.
 * @return true if not found.
 */
public boolean contains( AnyType x )
{
    return contains( x, root );
}

/**
 * Count the number of nodes in the tree.
 * @return the tree size.
 */
public int treeSize(){

    treeSize = treeSize(root);
    return treeSize;

}

/**
 * Make the tree logically empty.
 */
public void makeEmpty( )
{
    root = null;
}

/**
 * Test if the tree is logically empty.
 * @return true if empty, false otherwise.
 */
public boolean isEmpty( )
{
    return root == null;
}

/**
 * Print the tree contents in sorted order.
 */
public void printTree( )
{
    if( isEmpty( ) )
        System.out.println( "Empty tree" );
    else
        printTree( root );
}

public BinaryNode<AnyType> nthElement(int n){

    return nthElement(n, root);

}

/**
 * Internal method to insert into a subtree.
 * @param x the item to insert.
 * @param t the node that roots the subtree.
 * @return the new root of the subtree.
 */
private BinaryNode<AnyType> insert( AnyType x, BinaryNode<AnyType> t )
{
    if( t == null )
        return new BinaryNode<AnyType>( x, null, null );

    int compareResult = x.compareTo( t.element );

    if( compareResult < 0 )
        t.left = insert( x, t.left );
    else if( compareResult > 0 )
        t.right = insert( x, t.right );
    else
        ;  // Duplicate; do nothing
    return t;
}

/**
 * Internal method to remove from a subtree.
 * @param x the item to remove.
 * @param t the node that roots the subtree.
 * @return the new root of the subtree.
 */
private BinaryNode<AnyType> remove( AnyType x, BinaryNode<AnyType> t )
{
    if( t == null )
        return t;   // Item not found; do nothing

    int compareResult = x.compareTo( t.element );

    if( compareResult < 0 )
        t.left = remove( x, t.left );
    else if( compareResult > 0 )
        t.right = remove( x, t.right );
    else if( t.left != null && t.right != null ) // Two children
    {
        t.element = findMin( t.right ).element;
        t.right = remove( t.element, t.right );
    }
    else
        t = ( t.left != null ) ? t.left : t.right;
    return t;
}

/**
 * Internal method to find the smallest item in a subtree.
 * @param t the node that roots the subtree.
 * @return node containing the smallest item.
 */
private BinaryNode<AnyType> findMin( BinaryNode<AnyType> t )
{
    if( t == null )
        return null;
    else if( t.left == null )
        return t;
    return findMin( t.left );
}

/**
 * Internal method to find the largest item in a subtree.
 * @param t the node that roots the subtree.
 * @return node containing the largest item.
 */
private BinaryNode<AnyType> findMax( BinaryNode<AnyType> t )
{
    if( t != null )
        while( t.right != null )
            t = t.right;

    return t;
}

/**
 * Internal method to find an item in a subtree.
 * @param x is item to search for.
 * @param t the node that roots the subtree.
 * @return node containing the matched item.
 */
private boolean contains( AnyType x, BinaryNode<AnyType> t )
{
    if( t == null )
        return false;

    int compareResult = x.compareTo( t.element );

    if( compareResult < 0 )
        return contains( x, t.left );
    else if( compareResult > 0 )
        return contains( x, t.right );
    else
        return true;    // Match
}

/**
 * Internal method to print a subtree in sorted order.
 * @param t the node that roots the subtree.
 */
private void printTree( BinaryNode<AnyType> t )
{
    if( t != null )
    {
        printTree( t.left );
        System.out.println( t.element );
        printTree( t.right ); 
    }
}

/**
 * Internal method for traversing the tree in-order.
 * @param t the node that roots the subtree.
 * @return 
 */
  private void nthElement(int n, BinaryNode<AnyType> t){

    int i = t.treeSize;
    if(t.left.treeSize == n){
        System.out.println(t.element);
    }else if(t.left.treeSize > n){
        nthElement(n, t.left);
    }else if(t.left.treeSize < n){
        int k = i - t.left.treeSize;
        nthElement(k, t.right);
    }
}

/** 
 * Internal method for finding tree size.
 * @param t the node that roots the subtree.
 * @return the number of nodes.
 */
private int treeSize(BinaryNode<AnyType> t){

    int size = 1;                                      
    if(t.right != null){
        size = size + treeSize(t.right);        
    }
    if(t.left != null){
        size = size + treeSize(t.left);          
    }
    return t.treeSize = size;
} 

/**
 * Internal method to compute height of a subtree.
 * @param t the node that roots the subtree.
 */
private int height( BinaryNode<AnyType> t )
{
    if( t == null )
        return -1;
    else
        return 1 + Math.max( height( t.left ), height( t.right ) );    
}

// Basic node stored in unbalanced binary search trees
private static class BinaryNode<AnyType>
{
        // Constructors
    BinaryNode( AnyType theElement )
    {
        this( theElement, null, null );
    }

    BinaryNode( AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt )
    {
        element  = theElement;
        left     = lt;
        right    = rt;
    }

    AnyType element;            // The data in the node
    BinaryNode<AnyType> left;   // Left child
    BinaryNode<AnyType> right;  // Right child
}

    // Test program
public static void main( String [ ] args )
{
    BinarySearchTree<Integer> t = new BinarySearchTree<Integer>( );
    final int NUMS = 10;
    final int GAP  = 1;

    System.out.println( "Checking... (no more output means success)" );

    t.insert(55);
    t.insert(40);
    t.insert(35);
    t.insert(60);
    t.insert(70);
    t.insert(80);

    System.out.println("this is tree size: " + t.treeSize());
    int n = t.root.left.treeSize;
    System.out.println(n);
    t.nthElement(3);

}
}

编辑:我已经修改了nthElement(int n, BinaryNode<AnyType> t)treeSize(BinaryNode<AnyType t>方法。现在的问题是,我输入2和3以外的任何数字都会得到NullPointerException

问题是您需要从递归函数(或多个函数)中返回计数和节点。 如果您上交,我会以一种麻烦的方式来解决:)

Object nthElement(int n, BinaryNode t)
{
    // We are on the correct node, return it.
    if(n == 1) // I'll make this 1 based, so passing in 1 returns the first element. 
         return t;

    // Check the left side of the tree.
    if(t.left != null) {
        Object o=nthElement(n-1, t.left);
        // we found the correct node.
        if(o instanceof BinaryNode)
            return o;
        // we didn't find it but let's count the ones we found. (This is the "Trick")
        n=(Integer)o;
    }
    // We have no more children, let's just return our current count.
    if(t.right == null)
        return n;

    // Recurse right
    return(nthElement(n-1, t.right);
}

这是未经测试的手工编码,我经常在未经测试的快速代码上犯下巨大的逻辑错误,但是这个概念很合理。 任何值得一试的老师都可能会失败,因为返回值具有两种完全不同的不相关类型,并且我正在修改参数,但是我想给您一些乐趣!

用法必须检查返回值(如果它是BinaryNode的实例),如果不是树没有足够的节点,那就太好了。

同样出于娱乐目的,我认为-(int)nthElement(0,t)会计算树中的节点数。

“真实”递归解决方案将返回一个具有BinaryNode和一个计数的新可变对象。 当它传递时,您将修改计数,对访问的每个节点减去1,当您单击0时,将返回对象并提取其“ BinaryNode”

您最简单(但效率最低)的方法如下所示:

// Ignoring the possibility that there may not be n elements in the tree.
int leftSize = treeSize(t.left);
// If the size of the left tree is greater than n then the nth element must be up the left branch.
if ( leftSize >= n ) {
  return nthElement(n-1, t.left);
} else {
  // Otherwise it must be up the right branch.
  return nthElement(n-leftSize, t.right);
}

但是,最好实现一个Iterator并将其逐步执行n次。

这对我来说很好。 在保持计数的同时按顺序遍历树。

    int c = 0;
    public void findNth(int n, IntTree t) {

    if(!IntTree.isEmpty(t)) {
        findNth(n, t.left);
        c++;
        if(c==n)
            System.out.println("The element on position "+n+" is " + IntTree.value(t));
        findNth(n, t.right);

    }

我为解决这个问题感到震惊了两天。 我能够打印第n个元素到最后一个元素。 但是很难归还。 终于能够使用以下代码解决:

    public class BinarySearchTree {

    Node root;

    public Node findNth(int n){
        if(root == null)
            return null;

        NodeCounter myNode = new NodeCounter();

        findNth(root,n, myNode);
        return myNode.node;
    }


    private void findNth(Node head, int n, NodeCounter nodeObj){

        if(head == null)
            return;

        findNth(head.left, n ,nodeObj);
        nodeObj.counter = nodeObj.counter + 1;
        if(n == nodeObj.counter){
            nodeObj.node = head;
            return;
        }
        if(n > nodeObj.counter)
            findNth(head.right,n,nodeObj);

    }

}

private class NodeCounter{
        Node node;
        int counter = 0;
}
class Node{
    Node left;
    Node right;
    int data;

    public Node getLeft() {
        return left;
    }

    public Node getRight() {
        return right;
    }

}

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM