繁体   English   中英

多元Logistic回归与定量解释变量的相互作用

[英]Multiple Logistic Regression with Interaction between Quantitative and Qualitative Explanatory Variables

作为这个问题的后续,我将多元Logistic回归与定量和定性解释变量之间的相互作用进行了拟合。 MWE如下:

Type  <- rep(x=LETTERS[1:3], each=5)
Conc  <- rep(x=seq(from=0, to=40, by=10), times=3)
Total <- 50
Kill  <- c(10, 30, 40, 45, 38, 5, 25, 35, 40, 32, 0, 32, 38, 47, 40)

df <- data.frame(Type, Conc, Total, Kill)

fm1 <- 
  glm(
      formula = Kill/Total~Type*Conc
    , family  = binomial(link="logit")
    , data    = df
    , weights = Total
    )

summary(fm1)

Call:
glm(formula = Kill/Total ~ Type * Conc, family = binomial(link = "logit"), 
    data = df, weights = Total)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-4.871  -2.864   1.204   1.706   2.934  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.65518    0.23557  -2.781  0.00541 ** 
TypeB       -0.34686    0.33677  -1.030  0.30302    
TypeC       -0.66230    0.35419  -1.870  0.06149 .  
Conc         0.07163    0.01152   6.218 5.04e-10 ***
TypeB:Conc  -0.01013    0.01554  -0.652  0.51457    
TypeC:Conc   0.03337    0.01788   1.866  0.06201 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 277.092  on 14  degrees of freedom
Residual deviance:  96.201  on  9  degrees of freedom
AIC: 163.24

Number of Fisher Scoring iterations: 5

anova(object=fm1, test="LRT")

Analysis of Deviance Table

Model: binomial, link: logit

Response: Kill/Total

Terms added sequentially (first to last)


          Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
NULL                         14    277.092             
Type       2    6.196        12    270.895  0.04513 *  
Conc       1  167.684        11    103.211  < 2e-16 ***
Type:Conc  2    7.010         9     96.201  0.03005 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


df$Pred <- predict(object=fm1, data=df, type="response")

df1 <- with(data=df,
               expand.grid(Type=levels(Type)
                           , Conc=seq(from=min(Conc), to=max(Conc), length=51)
                           )
      )
df1$Pred <- predict(object=fm1, newdata=df1, type="response")

library(ggplot2)
ggplot(data=df, mapping=aes(x=Conc, y=Kill/Total, color=Type)) + geom_point() +
  geom_line(data=df1, mapping=aes(x=Conc, y=Pred), linetype=2) +
  geom_hline(yintercept=0.5,col="gray")

在此输入图像描述

我想用它们的置信区间来计算LD50LD90LD95 由于相互作用很大,所以我想分别计算每种Type (A, B, and C)的置信区间的LD50LD90LD95



LD代表致死剂量。 它是杀死测试群体的X%(LD50 = 50%)所需的物质量。

编辑 Type是表示不同类型药物的定性变量,而Conc是表示不同药物Conc的定量变量。

您使用drc包来适应逻辑剂量反应模型。

首先适合模型

require(drc)
mod <- drm(Kill/Total ~ Conc, 
           curveid = Type, 
           weights = Total, 
           data = df, 
           fct =  L.4(fixed = c(NA, 0, 1, NA)), 
           type = 'binomial')

这里curveid=指定数据的分组, fct=指定4参数逻辑函数,下限和上限的参数固定为0和1。

注意与glm的差异可以忽略不计:

df2 <- with(data=df,
            expand.grid(Conc=seq(from=min(Conc), to=max(Conc), length=51),
                        Type=levels(Type)))
df2$Pred <- predict(object=mod, newdata = df2)

这是与glm预测的差异的组合

hist(df2$Pred - df1$Pred)

在此输入图像描述

从模型中估算有效剂量(和CI)

使用ED()函数很容易:

ED(mod, c(50, 90, 95), interval = 'delta')

Estimated effective doses
(Delta method-based confidence interval(s))

     Estimate Std. Error   Lower  Upper
A:50   9.1468     2.3257  4.5885 13.705
A:90  39.8216     4.3444 31.3068 48.336
A:95  50.2532     5.8773 38.7338 61.773
B:50  16.2936     2.2893 11.8067 20.780
B:90  52.0214     6.0556 40.1527 63.890
B:95  64.1714     8.0068 48.4784 79.864
C:50  12.5477     1.5568  9.4963 15.599
C:90  33.4740     2.7863 28.0129 38.935
C:95  40.5904     3.6006 33.5334 47.648

对于每个组,我们获得ED50,ED90和ED95与CI。

您选择的链接函数(\\ eta = X \\ hat \\ beta)对于新观察(x_0)具有方差:V_ {x_0} = x_0 ^ T(X ^ TWX)^ { - 1} x_0

因此,对于一组候选剂量,我们可以使用反函数预测死亡的预期百分比:

newdata= data.frame(Type=rep(x=LETTERS[1:3], each=5),
                    Conc=rep(x=seq(from=0, to=40, by=10), times=3))
mm <- model.matrix(fm1, newdata)

# get link on link terms (could also use predict)
eta0 <- apply(mm, 1, function(i) sum(i * coef(fm1)))

# inverse logit function
ilogit <- function(x) return(exp(x) / (1+ exp(x)))

# predicted probs
ilogit(eta0)


# for comfidence intervals we can use a normal approximation
lethal_dose <- function(mod, newdata, alpha) {
  qn <- qnorm(1 - alpha /2)
  mm <- model.matrix(mod, newdata)
  eta0 <- apply(mm, 1, function(i) sum(i * coef(fm1)))
  var_mod <- vcov(mod)

  se <- apply(mm, 1, function(x0, var_mod) {
    sqrt(t(x0) %*% var_mod %*% x0)}, var_mod= var_mod)

  out <- cbind(ilogit(eta0 - qn * se),
               ilogit(eta0),
               ilogit(eta0 + qn * se))
  colnames(out) <- c("LB_CI", "point_est", "UB_CI")

  return(list(newdata=newdata,
              eff_dosage= out))
}

lethal_dose(fm1, newdata, alpha= 0.05)$eff_dosage
$eff_dosage
       LB_CI point_est     UB_CI
1  0.2465905 0.3418240 0.4517820
2  0.4361703 0.5152749 0.5936215
3  0.6168088 0.6851225 0.7462674
4  0.7439073 0.8166343 0.8722545
5  0.8315325 0.9011443 0.9439316
6  0.1863738 0.2685402 0.3704385
7  0.3289003 0.4044270 0.4847691
8  0.4890420 0.5567386 0.6223914
9  0.6199426 0.6990808 0.7679095
10 0.7207340 0.8112133 0.8773662
11 0.1375402 0.2112382 0.3102215
12 0.3518053 0.4335213 0.5190198
13 0.6104540 0.6862145 0.7531978
14 0.7916268 0.8620545 0.9113443
15 0.8962097 0.9469715 0.9736370

您可以操作:而不是手动执行此操作:

predict.glm(fm1, newdata, se=TRUE)$se.fit

暂无
暂无

声明:本站的技术帖子网页,遵循CC BY-SA 4.0协议,如果您需要转载,请注明本站网址或者原文地址。任何问题请咨询:yoyou2525@163.com.

 
粤ICP备18138465号  © 2020-2024 STACKOOM.COM