簡體   English   中英

插入排序,MergeSort和快速排序的測試用例

[英]Test case for Insertion Sort, MergeSort and Quick Sort

我已經實現了(在Java中)Insertion Sort,MergeSort,ModifiedMergeSort和Quick Sort:

ModifiedMergeSort有一個變量用於元素的“綁定”。 當要排序的元素小於或等於“bound”時,請使用Insertion Sort對它們進行排序。

為什么版本1比版本3,4和5更好?

版本2和6的結果是否真實?

這是我的結果(以毫秒為單位):

Version 1 - Insertion Sort: Run-Times over 50 test runs
Input Size      Best-Case       Worst-Case      Average-Case
N = 10000       14              19              14.96
N = 20000       59              60              59.3
N = 40000       234             277             243.1

Version 2 - Merge Sort: Run-Times over 50 test runs
Input Size      Best-Case       Worst-Case      Average-Case
N = 10000       1               15              1.78
N = 20000       3               8               3.4
N = 40000       6               9               6.7

Version 3 - Merge Sort and Insertion Sort on 15 elements: Run-Times over 50 test runs
Input Size      Best-Case       Worst-Case      Average-Case
N = 10000       41              52              45.42
N = 20000       170             176             170.56
N = 40000       712             823             728.08

Version 4 - Merge Sort and Insertion Sort on 30 elements: Run-Times over 50 test runs
Input Size      Best-Case       Worst-Case      Average-Case
N = 10000       27              33              28.04
N = 20000       113             119             114.36
N = 40000       436             497             444.2

Version 5 - Merge Sort and Insertion Sort on 45 elements: Run-Times over 50 test runs
Input Size      Best-Case       Worst-Case      Average-Case
N = 10000       20              21              20.68
N = 20000       79              82              79.7
N = 40000       321             383             325.64

Version 6 - Quick Sort: Run-Times over 50 test runs
Input Size      Best-Case       Worst-Case      Average-Case
N = 10000       1               9               1.18
N = 20000       2               3               2.06
N = 40000       4               5               4.26

這是我的代碼:

package com.testing;

import com.sorting.InsertionSort;
import com.sorting.MergeSort;
import com.sorting.ModifiedMergeSort;
import com.sorting.RandomizedQuickSort;

/**
 *
 * @author mih1406
 */
public class Main {
    private static final int R = 50; // # of tests
    private static int N = 0; // Input size
    private static int[] array; // Tests array
    private static int[] temp; // Tests array

    private static long InsertionSort_best = -1;
    private static long InsertionSort_worst = -1;
    private static double InsertionSort_average = -1.0;

    private static long MergeSort_best = -1;
    private static long MergeSort_worst = -1;
    private static double MergeSort_average = -1.0;

    private static long ModifiedMergeSort_V3_best = -1;
    private static long ModifiedMergeSort_V3_worst = -1;
    private static double ModifiedMergeSort_V3_average = -1.0;

    private static long ModifiedMergeSort_V4_best = -1;
    private static long ModifiedMergeSort_V4_worst = -1;
    private static double ModifiedMergeSort_V4_average = -1.0;

    private static long ModifiedMergeSort_V5_best = -1;
    private static long ModifiedMergeSort_V5_worst = -1;
    private static double ModifiedMergeSort_V5_average = -1.0;

    private static long RandomizedQuickSort_best = -1;
    private static long RandomizedQuickSort_worst = -1;
    private static double RandomizedQuickSort_average = -1.0;


    public static void main(String args[]) {
        StringBuilder InsertionSort_text = new StringBuilder(
                "Version 1 - Insertion Sort: Run-Times over 50 test runs\n");

        StringBuilder MergeSort_text = new StringBuilder(
                "Version 2 - Merge Sort: Run-Times over 50 test runs\n");

        StringBuilder ModifiedMergeSort_V3_text = new StringBuilder(
                "Version 3 - Merge Sort and Insertion Sort on 15 elements: Run-Times over 50 test runs\n");

        StringBuilder ModifiedMergeSort_V4_text = new StringBuilder(
                "Version 4 - Merge Sort and Insertion Sort on 30 elements: Run-Times over 50 test runs\n");

        StringBuilder ModifiedMergeSort_V5_text = new StringBuilder(
                "Version 5 - Merge Sort and Insertion Sort on 45 elements: Run-Times over 50 test runs\n");

        StringBuilder RandomizedQuickSort_text = new StringBuilder(
                "Version 6 - Quick Sort: Run-Times over 50 test runs\n");

        InsertionSort_text.append("Input Size\t\t"
                + "Best-Case\t\tWorst-Case\t\tAverage-Case\n");

        MergeSort_text.append("Input Size\t\t"
                + "Best-Case\t\tWorst-Case\t\tAverage-Case\n");

        ModifiedMergeSort_V3_text.append("Input Size\t\t"
                + "Best-Case\t\tWorst-Case\t\tAverage-Case\n");

        ModifiedMergeSort_V4_text.append("Input Size\t\t"
                + "Best-Case\t\tWorst-Case\t\tAverage-Case\n");

        ModifiedMergeSort_V5_text.append("Input Size\t\t"
                + "Best-Case\t\tWorst-Case\t\tAverage-Case\n");

        RandomizedQuickSort_text.append("Input Size\t\t"
                + "Best-Case\t\tWorst-Case\t\tAverage-Case\n");

        // Case N = 10000
        N = 10000;
        fillArray();
        testing_InsertionSort();
        testing_MergeSort();
        testing_ModifiedMergeSort(15);
        testing_ModifiedMergeSort(30);
        testing_ModifiedMergeSort(45);
        testing_RandomizedQuickSort();

        InsertionSort_text.append("N = " + N + "\t\t" + InsertionSort_best
                + "\t\t\t" + InsertionSort_worst + "\t\t\t"
                + InsertionSort_average + "\n");

        MergeSort_text.append("N = " + N + "\t\t" + MergeSort_best
                + "\t\t\t" + MergeSort_worst + "\t\t\t"
                + MergeSort_average + "\n");

        ModifiedMergeSort_V3_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V3_best
                + "\t\t\t" + ModifiedMergeSort_V3_worst + "\t\t\t"
                + ModifiedMergeSort_V3_average + "\n");

        ModifiedMergeSort_V4_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V4_best
                + "\t\t\t" + ModifiedMergeSort_V4_worst + "\t\t\t"
                + ModifiedMergeSort_V4_average + "\n");

        ModifiedMergeSort_V5_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V5_best
                + "\t\t\t" + ModifiedMergeSort_V5_worst + "\t\t\t"
                + ModifiedMergeSort_V5_average + "\n");

        RandomizedQuickSort_text.append("N = " + N + "\t\t" + RandomizedQuickSort_best
                + "\t\t\t" + RandomizedQuickSort_worst + "\t\t\t"
                + RandomizedQuickSort_average + "\n");

        // Case N = 20000
        N = 20000;
        fillArray();
        testing_InsertionSort();
        testing_MergeSort();
        testing_ModifiedMergeSort(15);
        testing_ModifiedMergeSort(30);
        testing_ModifiedMergeSort(45);
        testing_RandomizedQuickSort();

        InsertionSort_text.append("N = " + N + "\t\t" + InsertionSort_best
                + "\t\t\t" + InsertionSort_worst + "\t\t\t"
                + InsertionSort_average + "\n");

        MergeSort_text.append("N = " + N + "\t\t" + MergeSort_best
                + "\t\t\t" + MergeSort_worst + "\t\t\t"
                + MergeSort_average + "\n");

        ModifiedMergeSort_V3_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V3_best
                + "\t\t\t" + ModifiedMergeSort_V3_worst + "\t\t\t"
                + ModifiedMergeSort_V3_average + "\n");

        ModifiedMergeSort_V4_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V4_best
                + "\t\t\t" + ModifiedMergeSort_V4_worst + "\t\t\t"
                + ModifiedMergeSort_V4_average + "\n");

        ModifiedMergeSort_V5_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V5_best
                + "\t\t\t" + ModifiedMergeSort_V5_worst + "\t\t\t"
                + ModifiedMergeSort_V5_average + "\n");

        RandomizedQuickSort_text.append("N = " + N + "\t\t" + RandomizedQuickSort_best
                + "\t\t\t" + RandomizedQuickSort_worst + "\t\t\t"
                + RandomizedQuickSort_average + "\n");

        // Case N = 40000
        N = 40000;
        fillArray();
        testing_InsertionSort();
        testing_MergeSort();
        testing_ModifiedMergeSort(15);
        testing_ModifiedMergeSort(30);
        testing_ModifiedMergeSort(45);
        testing_RandomizedQuickSort();

        InsertionSort_text.append("N = " + N + "\t\t" + InsertionSort_best
                + "\t\t\t" + InsertionSort_worst + "\t\t\t"
                + InsertionSort_average + "\n");

        MergeSort_text.append("N = " + N + "\t\t" + MergeSort_best
                + "\t\t\t" + MergeSort_worst + "\t\t\t"
                + MergeSort_average + "\n");

        ModifiedMergeSort_V3_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V3_best
                + "\t\t\t" + ModifiedMergeSort_V3_worst + "\t\t\t"
                + ModifiedMergeSort_V3_average + "\n");

        ModifiedMergeSort_V4_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V4_best
                + "\t\t\t" + ModifiedMergeSort_V4_worst + "\t\t\t"
                + ModifiedMergeSort_V4_average + "\n");

        ModifiedMergeSort_V5_text.append("N = " + N + "\t\t" + ModifiedMergeSort_V5_best
                + "\t\t\t" + ModifiedMergeSort_V5_worst + "\t\t\t"
                + ModifiedMergeSort_V5_average + "\n");

        RandomizedQuickSort_text.append("N = " + N + "\t\t" + RandomizedQuickSort_best
                + "\t\t\t" + RandomizedQuickSort_worst + "\t\t\t"
                + RandomizedQuickSort_average + "\n");

        System.out.println(InsertionSort_text);
        System.out.println(MergeSort_text);
        System.out.println(ModifiedMergeSort_V3_text);
        System.out.println(ModifiedMergeSort_V4_text);
        System.out.println(ModifiedMergeSort_V5_text);
        System.out.println(RandomizedQuickSort_text);

    }

    private static void fillArray() {
        // (re)creating the array
        array = new int[N];

        // filling the array with random numbers
        // using for-loop and the given random generator instruction
        for(int i = 0; i < array.length; i++) {
            array[i] = (int)(1 + Math.random() * (N-0+1));
        }
    }

    private static void testing_InsertionSort() {
        // run-times arrays
        long [] run_times = new long[R];

        // start/finish times
        long start;
        long finish;
        for(int i = 0; i < R; i++) {
            copyArray();
            // recording start time
            start = System.currentTimeMillis();

            // testing the algorithm
            InsertionSort.sort(temp);

            // recording finish time
            finish = System.currentTimeMillis();

            run_times[i] = finish-start;
        }

        InsertionSort_best = findMin(run_times);
        InsertionSort_worst = findMax(run_times);
        InsertionSort_average = findAverage(run_times);
    }

    private static void testing_MergeSort() {
        // run-times arrays
        long [] run_times = new long[R];

        // start/finish times
        long start;
        long finish;
        for(int i = 0; i < R; i++) {
            copyArray();
            // recording start time
            start = System.currentTimeMillis();

            // testing the algorithm
            MergeSort.sort(temp);

            // recording finish time
            finish = System.currentTimeMillis();

            run_times[i] = finish-start;
        }

        MergeSort_best = findMin(run_times);
        MergeSort_worst = findMax(run_times);
        MergeSort_average = findAverage(run_times);
    }

    private static void testing_ModifiedMergeSort(int bound) {
        // run-times arrays
        long [] run_times = new long[R];

        // setting the bound
        ModifiedMergeSort.bound = bound;

        // start/finish times
        long start;
        long finish;
        for(int i = 0; i < R; i++) {
            copyArray();
            // recording start time
            start = System.currentTimeMillis();

            // testing the algorithm
            ModifiedMergeSort.sort(temp);

            // recording finish time
            finish = System.currentTimeMillis();

            run_times[i] = finish-start;
        }

        if(bound == 15) {
            ModifiedMergeSort_V3_best = findMin(run_times);
            ModifiedMergeSort_V3_worst = findMax(run_times);
            ModifiedMergeSort_V3_average = findAverage(run_times);
        }

        if(bound == 30) {
            ModifiedMergeSort_V4_best = findMin(run_times);
            ModifiedMergeSort_V4_worst = findMax(run_times);
            ModifiedMergeSort_V4_average = findAverage(run_times);
        }

        if(bound == 45) {
            ModifiedMergeSort_V5_best = findMin(run_times);
            ModifiedMergeSort_V5_worst = findMax(run_times);
            ModifiedMergeSort_V5_average = findAverage(run_times);
        }
    }

    private static void testing_RandomizedQuickSort() {
        // run-times arrays
        long [] run_times = new long[R];

        // start/finish times
        long start;
        long finish;
        for(int i = 0; i < R; i++) {
            copyArray();
            // recording start time
            start = System.currentTimeMillis();

            // testing the algorithm
            RandomizedQuickSort.sort(temp);

            // recording finish time
            finish = System.currentTimeMillis();

            run_times[i] = finish-start;
        }

        RandomizedQuickSort_best = findMin(run_times);
        RandomizedQuickSort_worst = findMax(run_times);
        RandomizedQuickSort_average = findAverage(run_times);
    }

    private static long findMax(long[] times) {
        long max = times[0];

        for(int i = 1; i < times.length; i++) {
            if(max < times[i]) {
                max = times[i];
            }
        }

        return max;
    }

    private static long findMin(long[] times) {
        long min = times[0];

        for(int i = 1; i < times.length; i++) {
            if(min > times[i]) {
                min = times[i];
            }
        }

        return min;
    }

    private static double findAverage(long[] times) {
        long sum = 0;
        double avg;

        for(int i = 0; i < times.length; i++) {
            sum += times[i];
        }

        avg = (double)sum/(double)times.length;

        return avg;
    }

    private static void copyArray() {
        temp = new int[N];
        System.arraycopy(array, 0, temp, 0, array.length);
    }
}

您目前正在采取的方法似乎存在一些系統性錯誤。 我將陳述您面臨的一些最明顯的實驗問題,即使它們可能不會直接成為您實驗結果的罪魁禍首。

JVM編譯

正如我之前在評論中所述,JVM默認情況下會以解釋模式運行您的代碼。 這意味着在您的方法中找到的每個字節碼指令將在現場解釋,然后運行。

這種方法的優點是,它允許您的應用程序比在每次運行啟動時編譯為本機代碼的Java程序具有更快的啟動時間。

不利的一面是,雖然沒有啟動性能,但是你會得到一個性能較慢的程序。

為了改善這兩個問題,JVM團隊進行了權衡。 最初您的程序將被解釋,但JVM將收集有關哪些方法(或方法的一部分)被密集使用的信息,並將僅編譯那些似乎被大量使用的方法。 在編譯時,你會得到一個小的性能命中,但隨后代碼將比以前更快。

在進行測量時,您必須考慮這一事實。

標准方法是“預熱JVM”,即稍微運行算法以確保JVM完成它需要執行的所有編譯。 讓JVM變暖的代碼與您想要進行基准測試的代碼相同非常重要,否則在您對代碼進行基准測試時可能會進行一些編譯。

測量時間

測量時間時,應使用System.nanoTime()而不是System.currentTimeMillis 我不會詳細介紹,可以在這里訪問。

你也應該小心。 下面的代碼塊起初可能看起來相同,但大多數時候會產生不同的結果:

totalDuration = 0;
for (i = 0; i < 1000; ++i)
    startMeasure = now();
    algorithm();
    endMeasure = now();
    duration = endMeasure - startMeasure;
    totalDuration += duration;
}

//...

TRIALS_COUNT = 1000;
startMeasure = now();
for (i = 0; i < TRIALS_COUNT; ++i)
    algorithm();
}
endMeasure = now();
 duration = endMeasure - startMeasure / TRIALS_COUNT;

為什么? 因為特別是對於更快的algorithm()實現,它們越快,獲得准確結果就越困難。

輸入值大

漸近符號有助於理解不同算法如何針對n大值進行升級。 將它們應用於小輸入值通常是荒謬的,因為在這種程度上,您通常需要的是計算精確的操作次數及其相關成本(類似於Jakub所做的那樣)。 Big O表示法大多數時候只對大Os有意義。 Big O將告訴您算法如何處理難以忍受的輸入值大小,而不是它如何處理小數字。 規范示例例如是QuickSort,對於大數組而言,它將是王者,但對於大小為4或5的數組而言,這通常比選擇或插入排序更慢。 但是,您的輸入大小似乎足夠大。

最后說明

正如Chang先前所說,Jakub完成的數學練習是完全錯誤的,不應該被考慮在內。

自己計算復雜性。 我假設10000個樣本用於以下計算:

插入排序: O(n ^ 2),10 000 * 10 000 = 100 000 000。

合並排序: O(nlogn),10 000 * log10 000 = 140 000。

合並插入(15): 15介於9(大小為20的數組)和10(大小為10的數組)2 ^ 10插入排序(大小為10),然后2 ^ 10 * 10 000合並:1 024 * 10 * 10(插入)+ 1 024 * 10 000(合並)= 10 342 400

合並插入(30): 30介於8(大小40的數組)和9(大小20的數組)2 ^ 9插入排序(大小20),然后2 ^ 9 * 10 000合並:512 * 20 * 20 (插入)+ 512 * 10 000(合並)= 5 324 800

與插入(45)合並: 45介於7(大小為80的數組)和8(大小為40的數組)2 ^ 8插入排序(大小為40),然后2 ^ 8 * 10 000合並:256 * 40 * 40 (插入)+ * 10 000(合並)= 2 969 600

Quicksort:雖然最壞情況的快速排序需要O(n ^ 2),但最壞的情況必須是特制的以達到這個極限。 大多數情況下,使用radomly生成的算法,平均為O(nlogn):10 000 * log10 000 = 140 000。

測量排序算法性能會變得非常痛苦,因為您需要在盡可能廣泛的輸入數據上有效地進行測量。

您在插入排序上看到的數字可能會因輸入數字而大幅偏差。 如果您在數組中僅使用0和1,並且數組是隨機生成的,那么實際上您可以更容易地解決算法問題。 對於給定的情況,平均一半的數組已經排序,並且您不需要將0和1相互比較。 問題是減少到向左傳輸所有0,平均只需要(log(n / 2))!+ n時間。 對於10 000,實際時間是5 000!+10 000 = 133 888。

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM