簡體   English   中英

fit_transform、transform 和 TfidfVectorizer 的工作原理

[英]How fit_transform, transform and TfidfVectorizer works

我正在做一個模糊匹配項目,我發現了一個非常有趣的方法:awesome_cossim_top

我全局理解定義,但不明白當我們做 fit_transform 時發生了什么

import pandas as pd
import sqlite3 as sql
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from scipy.sparse import csr_matrix
import sparse_dot_topn.sparse_dot_topn as ct
import re

def ngrams(string, n=3):
    string = re.sub(r'[,-./]|\sBD',r'', re.sub(' +', ' ',str(string)))
    ngrams = zip(*[string[i:] for i in range(n)])
    return [''.join(ngram) for ngram in ngrams]

def awesome_cossim_top(A, B, ntop, lower_bound=0):
    # force A and B as a CSR matrix.
    # If they have already been CSR, there is no overhead
    A = A.tocsr()
    B = B.tocsr()
    M, _ = A.shape
    _, N = B.shape

    idx_dtype = np.int32

    nnz_max = M*ntop

    indptr = np.zeros(M+1, dtype=idx_dtype)
    indices = np.zeros(nnz_max, dtype=idx_dtype)
    data = np.zeros(nnz_max, dtype=A.dtype)

    ct.sparse_dot_topn(
            M, N, np.asarray(A.indptr, dtype=idx_dtype),
            np.asarray(A.indices, dtype=idx_dtype),
            A.data,
            np.asarray(B.indptr, dtype=idx_dtype),
            np.asarray(B.indices, dtype=idx_dtype),
            B.data,
            ntop,
            lower_bound,
            indptr, indices, data)

    print('ct.sparse_dot_topn: ', ct.sparse_dot_topn)
    return csr_matrix((data,indices,indptr),shape=(M,N))

    def get_matches_df(sparse_matrix, A, B, top=100):
        non_zeros = sparse_matrix.nonzero()

        sparserows = non_zeros[0]
        sparsecols = non_zeros[1]

        if top:
            nr_matches = top
        else:
            nr_matches = sparsecols.size

        left_side = np.empty([nr_matches], dtype=object)
        right_side = np.empty([nr_matches], dtype=object)
        similairity = np.zeros(nr_matches)

        for index in range(0, nr_matches):
            left_side[index] = A[sparserows[index]]
            right_side[index] = B[sparsecols[index]]
            similairity[index] = sparse_matrix.data[index]

        return pd.DataFrame({'left_side': left_side,
                             'right_side': right_side,
                             'similairity': similairity})

這是我遇到困惑的腳本:為什么我們應該先使用 fit_transform 然后只使用 SAME 矢量化器進行轉換。 我試圖從向量化器和矩陣打印一些輸出,如 print(vectorizer.get_feature_names()) 但不理解邏輯。

有人可以幫我澄清一下嗎?

非常感謝 !!

Col_clean = 'fruits_normalized'
Col_dirty = 'fruits'

#read table
data_dirty={f'{Col_dirty}':['I am an apple', 'You are an apple', 'Aple', 'Appls', 'Apples']}
data_clean= {f'{Col_clean}':['apple', 'pear', 'banana', 'apricot', 'pineapple']}

df_clean = pd.DataFrame(data_clean)
df_dirty = pd.DataFrame(data_dirty)

Name_clean = df_clean[f'{Col_clean}'].unique()
Name_dirty= df_dirty[f'{Col_dirty}'].unique()

vectorizer = TfidfVectorizer(min_df=1, analyzer=ngrams)
clean_idf_matrix = vectorizer.fit_transform(Name_clean)
dirty_idf_matrix = vectorizer.transform(Name_dirty)

matches = awesome_cossim_top(dirty_idf_matrix, clean_idf_matrix.transpose(),1,0)
matches_df = get_matches_df(matches, Name_dirty, Name_clean, top = 0)

with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    matches_df.to_excel("output_apple.xlsx")

print('done')

TfidfVectorizer.fit_transform用於從訓練數據集創建詞匯表, TfidfVectorizer.transform用於將該詞匯表映射到測試數據集,以便測試數據中的特征數量與訓練數據相同。 下面的例子可能會有所幫助:

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer

創建一個虛擬訓練數據:

train = pd.DataFrame({'Text' :['I am a data scientist','Cricket is my favorite sport', 'I work on Python regularly', 'Python is very fast for data mining', 'I love playing cricket'],
                      'Category' :['Data_Science','Cricket','Data_Science','Data_Science','Cricket']})

還有一個小測試數據:

test = pd.DataFrame({'Text' :['I am new to data science field', 'I play cricket on weekends', 'I like writing Python codes'],
                         'Category' :['Data_Science','Cricket','Data_Science']})

創建一個名為vectorizerTfidfVectorizer()對象

vectorizer = TfidfVectorizer()

將其擬合到火車數據上

X_train = vectorizer.fit_transform(train['Text'])
print(vectorizer.get_feature_names())

#['am', 'cricket', 'data', 'fast', 'favorite', 'for', 'is', 'love', 'mining', 'my', 'on', 'playing', 'python', 'regularly', 'scientist', 'sport', 'very', 'work']

feature_names = vectorizer.get_feature_names()
df= pd.DataFrame(X.toarray(),columns=feature_names)

現在看看如果你在測試數據集上做同樣的事情會發生什么:

vectorizer_test = TfidfVectorizer()
X_test = vectorizer_test.fit_transform(test['Text'])
print(vectorizer_test.get_feature_names())

#['am', 'codes', 'cricket', 'data', 'field', 'like', 'new', 'on', 'play', 'python', 'science', 'to', 'weekends', 'writing']
feature_names_test = vectorizer_test.get_feature_names()
df_test= pd.DataFrame(X_test.toarray(),columns = feature_names_test)

它使用測試數據集創建了另一個詞匯表,與來自訓練數據的 18 個詞(列)相比,它有 14 個唯一的詞(列)。

現在,如果您在訓練數據上訓練機器學習算法進行text-classification並嘗試根據測試數據對矩陣進行預測,它將失敗並產生錯誤,即訓練數據和測試數據之間的特征不同。

為了克服這個錯誤,我們在text-classification做這樣的事情:

X_test_from_train = vectorizer.transform(test['Text'])
feature_names_test_from_train = vectorizer.get_feature_names()
df_test_from_train = pd.DataFrame(X_test_from_train.toarray(),columns = feature_names_test_from_train)

在這里你會注意到我們沒有使用fit_transform命令,而是對測試數據使用了transform ,原因相同,在對測試數據進行預測時,我們只想使用在訓練和測試中相似的特征數據,以便我們沒有特征不匹配錯誤。

希望這可以幫助!!

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM