簡體   English   中英

使用 Keras 的 model ZA2F2ED4F298E054E4FB8821C5ED2Z 2.x 將 Tensorflow 1.x 代碼遷移到 Tensorflow 2.x

[英]Migrate Tensorflow 1.x code to Tensorflow 2.x using Keras' model class

我剛剛開始學習 Tensorflow 2.1.0 和 Keras 2.3.1 和 Python 3.7.7。

我發現這個“ 使用原型網絡的 Omniglot 字符集分類” github Jupyter Notebook,我認為它適用於 Tensorflow 1.x。

我的問題是這段代碼:

for epoch in range(num_epochs):

    for episode in range(num_episodes):

        # select 60 classes
        episodic_classes = np.random.permutation(no_of_classes)[:num_way]

        support = np.zeros([num_way, num_shot, img_height, img_width], dtype=np.float32)

        query = np.zeros([num_way, num_query, img_height, img_width], dtype=np.float32)


        for index, class_ in enumerate(episodic_classes):
            selected = np.random.permutation(num_examples)[:num_shot + num_query]
            support[index] = train_dataset[class_, selected[:num_shot]]

            # 5 querypoints per classs
            query[index] = train_dataset[class_, selected[num_shot:]]

        support = np.expand_dims(support, axis=-1)
        query = np.expand_dims(query, axis=-1)
        labels = np.tile(np.arange(num_way)[:, np.newaxis], (1, num_query)).astype(np.uint8)
        _, loss_, accuracy_ = sess.run([train, loss, accuracy], feed_dict={support_set: support, query_set: query, y:labels})

        if (episode+1) % 10 == 0:
            print('Epoch {} : Episode {} : Loss: {}, Accuracy: {}'.format(epoch+1, episode+1, loss_, accuracy_))

是否有任何教程或書籍或文章可以幫助我使用 Keras 的 model 將此代碼遷移到 Tensorflow 2.x 和 Keras?

我想從鏈接中編寫代碼,如下所示:

import numpy as np 
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras

def unet(pretrained_weights = None,input_size = (256,256,1)):
    inputs = Input(input_size)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
    drop4 = Dropout(0.5)(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
    drop5 = Dropout(0.5)(conv5)

    up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
    merge6 = concatenate([drop4,up6], axis = 3)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

    up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
    merge7 = concatenate([conv3,up7], axis = 3)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

    up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
    merge8 = concatenate([conv2,up8], axis = 3)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

    up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
    merge9 = concatenate([conv1,up9], axis = 3)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)

    model = Model(input = inputs, output = conv10)

    model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])

    #model.summary()

    if(pretrained_weights):
        model.load_weights(pretrained_weights)

    return model

train.py中:

model = unet(...)
model.compile(...)
model.fit(...)

Tensorflow 的這篇教程總結了一切。

最重要的是Sessions不存在了,model 應該使用tensorflow.keras.layers創建。

現在,在訓練 model 時,您有 2 個選擇,您可以使用 Keras 方式,也可以使用GradientTape (這有點舊方式)。

這意味着您有兩種選擇,一種不會對您的代碼產生太大影響(GradientTape),另一種只會讓您改變一些事情(Keras)。

漸變膠帶

GradientTape 用於您想要自己循環並計算所需的漸變,它有點像 Tensorflow 1.X。

  • 使用 Keras API 構建您的 model:
import tensorflow as tf

def unet(...):
    inputs = tf.keras.layers.Input(shape_images)
    ...
    model = Model(input = inputs, output = conv10)

    model.compile(...)

    return model

...

model = unet(...)
  • 定義損失
mse = tf.keras.losses.MeanSquaredError()
  • 定義優化器
optimizer = tf.keras.optimizer.Adam(lr=1e-4)

然后,您像往常一樣進行訓練,只是將舊的 Session 機制替換為 GradientTape:


for epoch in range(num_epochs):

    for episode in range(num_episodes):

        # select 60 classes
        episodic_classes = np.random.permutation(no_of_classes)[:num_way]

        support = np.zeros([num_way, num_shot, img_height, img_width], dtype=np.float32)

        query = np.zeros([num_way, num_query, img_height, img_width], dtype=np.float32)


        for index, class_ in enumerate(episodic_classes):
            selected = np.random.permutation(num_examples)[:num_shot + num_query]
            support[index] = train_dataset[class_, selected[:num_shot]]

            # 5 querypoints per classs
            query[index] = train_dataset[class_, selected[num_shot:]]

        support = np.expand_dims(support, axis=-1)
        query = np.expand_dims(query, axis=-1)
        labels = np.tile(np.arange(num_way)[:, np.newaxis], (1, num_query)).astype(np.uint8)

        # No session here but a Gradient computing

        with tf.GradientTape() as tape:
            prediction = model(support) # or whatever you need as input of model
            loss = mse(label, prediction)
        # apply gradient descent
        grads = tape.gradient(loss, model.trainable_weights)
        optimizer.apply_gradients(zip(grads, model.trainable_weights))

Keras

對於 keras,您需要更改提供數據的方式,因為使用fit ,您將沒有 for 循環,而您需要實現Generator或任何可以迭代的數據結構。 這意味着您基本上需要(X, y)的列表。 data_struct[0] 將為您提供第一個 X,Y 對。

一旦你有了這個數據結構,就很容易了。

  • 像 GradientTape 一樣定義 model

  • 像 GradientTape 一樣定義優化器

  • 編譯 model


model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # Or whatever you need as loss/metrics

  • 使用您的 data_struct 安裝 model
model.fit(data_struct, epochs=500) # Add validation_data if you want, callback ...

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM