簡體   English   中英

C / C#的模量越快?

[英]Faster modulus in C/C#?

對於特定鹼基,是否有創建比標准%運算符更快的整數模數的技巧?

對於我的程序,我會尋找大約1000-4000(例如n%2048)。 是否有更快的方法來執行n模數2048而不是簡單: n%2048

如果分母在編譯時已知為2的冪,就像2048的例子那樣,你可以減去1並按位進行。

那是:

n % m == n & (m - 1) 

......其中m是2的冪。

例如:

22 % 8 == 22 - 16 == 6

         Dec   Bin
       -----   -----
          22 = 10110
           8 = 01000  
       8 - 1 = 00111 
22 & (8 - 1) =   10110 
               & 00111 
               -------
           6 =   00110

請記住,一個好的編譯器將有自己的%優化,甚至可能與上述技術一樣快。 算術運算符往往相當優化。

對於2^n冪,您所要做的就是將除最后n位之外的所有位清零。

例如(假設32位整數):

x%2相當於x & 0x00000001

x%4相當於x & 0x00000003

通常, x % (2^n)等於x & (2^n-1) 用C寫出來,這將是x & ((1<<n)-1)

這是因為2^n在第n+1位(從右側)給出1。 所以2^n-1會在右邊給你n個,在左邊給你0。

您可以將高階位清零,即

x = 11 = 1011
x%4 = 3 = 0011

所以對於x%4你可以拿最后兩位 - 我不知道如果使用負數會發生什么

這里有一些復制模數運算的技術。

在那些基准測試中,這是最快的(修改為適合您的2048場景)。 只要您的“最大”不是數百萬且在您提到的1000-4000范圍內,它也可能對您來說更快:

int threshold = 2048; //the number to mod by
int max = 1000; //the number on the left. Ex: 1000 % 2048
int total = 0;
int y = 0;
for (int x = 0; x < max; x++)
{
    if (y > (threshold - 1))
    {
        y = 0;
        total += x;
    }
    y += 1;
}
return total;

搏一搏。 在各種設置下,它在作者的機器上表現得更快 ,因此也應該表現得非常好。

對無符號整數進行乘法/除法的最快方法是向左或向右移位。 Shift操作直接與CPU命令匹配。 例如,3 << 2 = 6,而4 >> 1 = 2。

您可以使用相同的技巧來計算模塊:向左移動一個足夠遠的整數,以便只剩下剩余的位,然后將其向右移動,以便檢查余數值。

另一方面,整數模也作為CPU命令存在。 如果整數模運算符在優化的構建中映射到此命令,則使用位移技巧不會看到任何改進。

以下代碼通過移動足夠遠而僅剩下最后2位(因為4 = 2 ^ 2)來計算7%4。 這意味着我們需要移位30位:

uint i=7;
var modulo=((i<<30)>>30);

結果是3

編輯:

我剛剛閱讀了所有解決方案,提出簡單地刪除高階位。 它具有相同的效果,但更簡單直接。

如果你除以2的冪的文字,那么答案可能是否:任何體面的編譯器都會自動將這些表達式轉換為AND運算的變體,這非常接近最優。

通過在運行時預先計算魔術常數 ,可以使用乘法 - 加 - 移來實現除法,從而實現無分支冪二模數。

這比我的英特爾酷睿i5上的內置模數運算符%快約2倍。

令我感到驚訝的是它不是更具戲劇性,因為x86 CPU div指令在某些CPU上的64位除法可能會有高達80-90個周期的延遲 ,相比之下,3個周期的mul和每個1個周期的按位運算。

下面顯示的概念和時間證明。 series_len是指在單個var上串行執行的模數ops的數量。 這是為了防止CPU通過並行化隱藏延遲。


#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

typedef int32_t s32;
typedef uint32_t u32;
typedef uint64_t u64;

#define NUM_NUMS 1024
#define NUM_RUNS 500
#define MAX_NUM UINT32_MAX
#define MAX_DEN 1024

struct fastdiv {
    u32 mul;
    u32 add;
    s32 shift;
    u32 _odiv;  /* save original divisor for modulo calc */
};

static u32 num[NUM_NUMS];
static u32 den[NUM_NUMS];
static struct fastdiv fd[NUM_NUMS];

/* hash of results to prevent gcc from optimizing out our ops */
static u32 cookie = 0;

/* required for magic constant generation */
u32 ulog2(u32 v) {
    u32 r, shift;
    r =     (v > 0xFFFF) << 4; v >>= r;
    shift = (v > 0xFF  ) << 3; v >>= shift; r |= shift;
    shift = (v > 0xF   ) << 2; v >>= shift; r |= shift;
    shift = (v > 0x3   ) << 1; v >>= shift; r |= shift;
                                            r |= (v >> 1);
    return r;
}

/* generate constants for implementing a division with multiply-add-shift */
void fastdiv_make(struct fastdiv *d, u32 divisor) {
    u32 l, r, e;
    u64 m;

    d->_odiv = divisor;
    l = ulog2(divisor);
    if (divisor & (divisor - 1)) {
        m = 1ULL << (l + 32);
        d->mul = (u32)(m / divisor);
        r = (u32)m - d->mul * divisor;
        e = divisor - r;
        if (e < (1UL << l)) {
            ++d->mul;
            d->add = 0;
        } else {
            d->add = d->mul;
        }
        d->shift = l;
    } else {
        if (divisor == 1) {
            d->mul = 0xffffffff;
            d->add = 0xffffffff;
            d->shift = 0;
        } else {
            d->mul = 0x80000000;
            d->add = 0;
            d->shift = l-1;
        }
    }
}

/* 0: use function that checks for a power-of-2 modulus (speedup for POTs)
 * 1: use inline macro */
#define FASTMOD_BRANCHLESS 0

#define fastdiv(v,d) ((u32)(((u64)(v)*(d)->mul + (d)->add) >> 32) >> (d)->shift)
#define _fastmod(v,d) ((v) - fastdiv((v),(d)) * (d)->_odiv)

#if FASTMOD_BRANCHLESS
#define fastmod(v,d) _fastmod((v),(d))
#else
u32 fastmod(u32 v, struct fastdiv *d) {
    if (d->mul == 0x80000000) {
        return (v & ((1 << d->shift) - 1));
    }
    return _fastmod(v,d);
}
#endif

u32 random32(u32 upper_bound) {
    return arc4random_uniform(upper_bound);
}

u32 random32_range(u32 lower_bound, u32 upper_bound) {
    return random32(upper_bound - lower_bound) + lower_bound;
}

void fill_arrays() {
    int i;
    for (i = 0; i < NUM_NUMS; ++i) {
        num[i] = random32_range(MAX_DEN, MAX_NUM);
        den[i] = random32_range(1, MAX_DEN);
        fastdiv_make(&fd[i], den[i]);
    }
}

void fill_arrays_pot() {
    u32 log_bound, rand_log;
    int i;

    log_bound = ulog2(MAX_DEN);
    for (i = 0; i < NUM_NUMS; ++i) {
        num[i] = random32_range(MAX_DEN, MAX_NUM);
        rand_log = random32(log_bound) + 1;
        den[i] = 1 << rand_log;
        fastdiv_make(&fd[i], den[i]);
    }
}

u64 clock_ns() {
    struct timeval tv;
    gettimeofday(&tv, NULL);
    return tv.tv_sec*1000000000 + tv.tv_usec*1000;
}

void use_value(u32 v) {
    cookie += v;
}

int main(int argc, char **arg) {
    u64 builtin_npot_ns;
    u64 builtin_pot_ns;
    u64 branching_npot_ns;
    u64 branching_pot_ns;
    u64 branchless_npot_ns;
    u64 branchless_pot_ns;
    u64 t0, t1;
    u32 v;
    int s, r, i, j;
    int series_len;

    builtin_npot_ns = builtin_pot_ns = 0;
    branching_npot_ns = branching_pot_ns = 0;
    branchless_npot_ns = branchless_pot_ns = 0;

    for (s = 5; s >= 0; --s) {
        series_len = 1 << s;
        for (r = 0; r < NUM_RUNS; ++r) {
            /* built-in NPOT */
            fill_arrays();
            t0 = clock_ns();
            for (i = 0; i < NUM_NUMS; ++i) {
                v = num[i];
                for (j = 0; j < series_len; ++j) {
                    v /= den[i];
                }
                use_value(v);
            }
            t1 = clock_ns();
            builtin_npot_ns += (t1 - t0) / NUM_NUMS;

            /* built-in POT */
            fill_arrays_pot();
            t0 = clock_ns();
            for (i = 0; i < NUM_NUMS; ++i) {
                v = num[i];
                for (j = 0; j < series_len; ++j) {
                    v /= den[i];
                }
                use_value(v);
            }
            t1 = clock_ns();
            builtin_pot_ns += (t1 - t0) / NUM_NUMS;

            /* branching NPOT */
            fill_arrays();
            t0 = clock_ns();
            for (i = 0; i < NUM_NUMS; ++i) {
                v = num[i];
                for (j = 0; j < series_len; ++j) {
                    v = fastmod(v, fd+i);
                }
                use_value(v);
            }
            t1 = clock_ns();
            branching_npot_ns += (t1 - t0) / NUM_NUMS;

            /* branching POT */
            fill_arrays_pot();
            t0 = clock_ns();
            for (i = 0; i < NUM_NUMS; ++i) {
                v = num[i];
                for (j = 0; j < series_len; ++j) {
                    v = fastmod(v, fd+i);
                }
                use_value(v);
            }
            t1 = clock_ns();
            branching_pot_ns += (t1 - t0) / NUM_NUMS;

            /* branchless NPOT */
            fill_arrays();
            t0 = clock_ns();
            for (i = 0; i < NUM_NUMS; ++i) {
                v = num[i];
                for (j = 0; j < series_len; ++j) {
                    v = _fastmod(v, fd+i);
                }
                use_value(v);
            }
            t1 = clock_ns();
            branchless_npot_ns += (t1 - t0) / NUM_NUMS;

            /* branchless POT */
            fill_arrays_pot();
            t0 = clock_ns();
            for (i = 0; i < NUM_NUMS; ++i) {
                v = num[i];
                for (j = 0; j < series_len; ++j) {
                    v = _fastmod(v, fd+i);
                }
                use_value(v);
            }
            t1 = clock_ns();
            branchless_pot_ns += (t1 - t0) / NUM_NUMS;
        }

        builtin_npot_ns /= NUM_RUNS;
        builtin_pot_ns /= NUM_RUNS;
        branching_npot_ns /= NUM_RUNS;
        branching_pot_ns /= NUM_RUNS;
        branchless_npot_ns /= NUM_RUNS;
        branchless_pot_ns /= NUM_RUNS;

        printf("series_len = %d\n", series_len);
        printf("----------------------------\n");
        printf("builtin_npot_ns    : %llu ns\n", builtin_npot_ns);
        printf("builtin_pot_ns     : %llu ns\n", builtin_pot_ns);
        printf("branching_npot_ns  : %llu ns\n", branching_npot_ns);
        printf("branching_pot_ns   : %llu ns\n", branching_pot_ns);
        printf("branchless_npot_ns : %llu ns\n", branchless_npot_ns);
        printf("branchless_pot_ns  : %llu ns\n\n", branchless_pot_ns);
    }
    printf("cookie=%u\n", cookie);
}

結果

Intel Core i5(MacBookAir7,2),macOS 10.11.6,clang 8.0.0

series_len = 32
----------------------------
builtin_npot_ns    : 218 ns
builtin_pot_ns     : 225 ns
branching_npot_ns  : 115 ns
branching_pot_ns   : 42 ns
branchless_npot_ns : 110 ns
branchless_pot_ns  : 110 ns

series_len = 16
----------------------------
builtin_npot_ns    : 87 ns
builtin_pot_ns     : 89 ns
branching_npot_ns  : 47 ns
branching_pot_ns   : 19 ns
branchless_npot_ns : 45 ns
branchless_pot_ns  : 45 ns

series_len = 8
----------------------------
builtin_npot_ns    : 32 ns
builtin_pot_ns     : 34 ns
branching_npot_ns  : 18 ns
branching_pot_ns   : 10 ns
branchless_npot_ns : 17 ns
branchless_pot_ns  : 17 ns

series_len = 4
----------------------------
builtin_npot_ns    : 15 ns
builtin_pot_ns     : 16 ns
branching_npot_ns  : 8 ns
branching_pot_ns   : 3 ns
branchless_npot_ns : 7 ns
branchless_pot_ns  : 7 ns

series_len = 2
----------------------------
builtin_npot_ns    : 8 ns
builtin_pot_ns     : 7 ns
branching_npot_ns  : 4 ns
branching_pot_ns   : 2 ns
branchless_npot_ns : 2 ns
branchless_pot_ns  : 2 ns

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM