簡體   English   中英

如何在C#中使用移位進行乘法

[英]How to make multiplication with bit shift in C#

我知道定點數學運算中使用的位移乘法,例如,如果我需要將兩個浮點值相乘,我應該將其乘以比例因子(例如,在那種情況下為20),然后再將結果值乘以整數值,然后我應將它們恢復為正常的數字表示形式,應在比例因子上再次划分如何使用移位運算來執行?

基於文章:5.4定點運算

我已經在下面嘗試過此代碼示例,並且我期望結果floatResShiftfloatResNormal將相同,但它們是不同的,我在做什么是錯誤的?:

        float mul1 = 18.579434f;
        float mul2 = 34.307951f;

        int shiftMul1 = (int)((2 ^ 32) * mul1);
        int shiftMul2 = (int)((2 ^ 32) * mul2);

        var resultMul = shiftMul1 * shiftMul2;
        float floatResShift = resultMul >> 32; // wrong value
        float floatResNormal = mul1 * mul2; //expected value

更新:

定點算術說明:

當使用32位整數的A = 2.5和B = 8.4時,使用定點算法計算A·B的結果將涉及以下操作:

確定比例因子。 這在很大程度上取決於可能看到的數字。 由於此示例中的數字非常小,因此它的重要性不那么重要,可以接受16個小數位(小數點右邊的位)。 比例因子將為f = 216 =65536。這種格式稱為Q15.16(小數點左側的15位,右側16的位和一個符號的位)。

使用正常整數乘法將Ai和Bi相乘。 Ri = Ai·Bi = 163840·550502 =90194247680。之所以這么大,是因為Ai和Bi都按比例縮放為我們的Q15.16格式,所以乘法產生的數字本質上是(A·f)· (B·f)= A·B·f2。

為了使結果返回Q15.16格式,必須將結果除以比例因子。 這也可以使用位移算法來完成,但是為了簡單起見,這里使用除法。 Ri / f = 90194247680/65536 = 1376255,這是我們采用Q15.16格式的結果

要將數字轉換成正常的實數,只需將其轉換為所需的格式,然后再次除以比例因子即可,因此:1376255.0 / 65536.0 = 20.999985,接近預期的數字21。

用比例因子縮放數字。 在二進制算術中,這可以使用位移來實現,但為簡單起見,我們將使用乘以比例因子。 Ai = A·f = 2.5·65536 = 163840,B·f = 8.4·65536 = 550502.4然后被截短,將其轉換為整數,因此Bi = 550502。

要將數字轉換成正常的實數,只需將其轉換為所需的格式,然后再次除以比例因子即可,因此:1376255.0 / 65536.0 = 20.999985,接近預期的數字21。

如何使上面的評論一樣,但有位移。 並且在點之后具有較大的浮點值

我已經嘗試了上面的代碼,但是沒有運氣。

例如,我需要將兩個值18.579434f和34.307951f相乘,但要使用定點算法。

更新:

我嘗試過使用較小的比例因子,但是沒有運氣。

解:

也許我沒有清楚地解釋問題,但是我解決了問題,找到了解決方案:

謝謝大家,問題已經結束,這是帶有定點乘法的完整代碼:

    float mul1 = 18.579434f;
    float mul2 = 34.307951f;

    int scaleFactor = (int) Math.Pow(2, 20);

    long shiftMul1 = (int)((scaleFactor) * mul1);
    long shiftMul2 = (int)((scaleFactor) * mul2);

    var resultMul = shiftMul1 * shiftMul2;
    float floatResShift = resultMul >> 40; 
    float floatResNormal = mul1 * mul2; // the result floatResNormal almost same as floatResShift
var k = 20;
var k_2 = k/2;
var p = 1 << k;

float mul1 = 18.579434f;
float mul2 = 34.307951f;

int shiftMul1 = (int)(p * mul1);
int shiftMul2 = (int)(p * mul2);

//fixed point multiplication         
var resultMul = ((shiftMul1 >> k_2) * (shiftMul2 >> k_2));

float floatResShift = ((float)resultMul)/p;
float floatResNormal = mul1 * mul2; 

Console.WriteLine("{0} {1}", floatResNormal, floatResShift);

輸出:

637,4223 637,4043

檢查此代碼

/*
Fixed Point Arithmatic structure and relevant methods. Simple fixed point structure included as well.

Created from information and code gathered here: http://stackoverflow.com/questions/605124/fixed-point-math-in-c

May be used for anything without permission.

To quote the original author (x4000 of stackoverflow.com):
"The accuracy of these functions as they are coded here is more than enough for my purposes, but if you need more you can increase the SHIFT AMOUNT on FInt.
Just be aware that if you do so, the constants on [trigonomic] functions will then need to be divided by 4096 and then multiplied by whatever your new SHIFT AMOUNT requires.
You're likely to run into some bugs if you do that and aren't careful, so be sure to run checks against the built-in Math functions to make sure that your results aren't
being put off by incorrectly adjusting a constant."

Code credit: x4000 of stackoverflow.com

Compiled into a usable source file by: Paul Bergeron

Date: 7/1/2009

More fixed point functions can be found written in Java here: http://home.comcast.net/~ohommes/MathFP/

*/

public struct FInt
{
    public long RawValue;
    public const int SHIFT_AMOUNT = 12; //12 is 4096

    public const long One = 1 << SHIFT_AMOUNT;
    public const int OneI = 1 << SHIFT_AMOUNT;
    public static FInt OneF = new FInt( 1, true );

    #region Constructors
    public FInt( long StartingRawValue, bool UseMultiple )
    {
        this.RawValue = StartingRawValue;
        if ( UseMultiple )
            this.RawValue = this.RawValue << SHIFT_AMOUNT;
    }
    public FInt( double DoubleValue )
    {
        DoubleValue *= (double)One;
        this.RawValue = (int)Math.Round( DoubleValue );
    }
    #endregion

    public int IntValue
    {
        get { return (int)( this.RawValue >> SHIFT_AMOUNT ); }
    }

    public int ToInt()
    {
        return (int)( this.RawValue >> SHIFT_AMOUNT );
    }

    public double ToDouble()
    {
        return (double)this.RawValue / (double)One;
    }

    public FInt Inverse
    {
        get { return new FInt( -this.RawValue, false ); }
    }

    #region FromParts
    /// <summary>
    /// Create a fixed-int number from parts.  For example, to create 1.5 pass in 1 and 500.
    /// </summary>
    /// <param name="PreDecimal">The number above the decimal.  For 1.5, this would be 1.</param>
    /// <param name="PostDecimal">The number below the decimal, to three digits.
    /// For 1.5, this would be 500. For 1.005, this would be 5.</param>
    /// <returns>A fixed-int representation of the number parts</returns>
    public static FInt FromParts( int PreDecimal, int PostDecimal )
    {
        FInt f = new FInt( PreDecimal );
        if ( PostDecimal != 0 )
            f.RawValue += ( new FInt( PostDecimal ) / 1000 ).RawValue;

        return f;
    }
    #endregion

    #region *
    public static FInt operator *( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue * other.RawValue ) >> SHIFT_AMOUNT, false );
    }

    public static FInt operator *( FInt one, int multi )
    {
        return one * (FInt)multi;
    }

    public static FInt operator *( int multi, FInt one )
    {
        return one * (FInt)multi;
    }
    #endregion

    #region /
    public static FInt operator /( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue << SHIFT_AMOUNT ) / ( other.RawValue  ), false );
    }

    public static FInt operator /( FInt one, int divisor )
    {
        return one / (FInt)divisor;
    }

    public static FInt operator /( int divisor, FInt one )
    {
        return (FInt)divisor / one;
    }
    #endregion

    #region %
    public static FInt operator %( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue ) % ( other.RawValue ), false );
    }

    public static FInt operator %( FInt one, int divisor )
    {
        return one % (FInt)divisor;
    }

    public static FInt operator %( int divisor, FInt one )
    {
        return (FInt)divisor % one;
    }
    #endregion

    #region +
    public static FInt operator +( FInt one, FInt other )
    {
        return new FInt( one.RawValue + other.RawValue, false );
    }

    public static FInt operator +( FInt one, int other )
    {
        return one + (FInt)other;
    }

    public static FInt operator +( int other, FInt one )
    {
        return one + (FInt)other;
    }
    #endregion

    #region -
    public static FInt operator -( FInt one, FInt other )
    {
        return new FInt( one.RawValue - other.RawValue, false );
    }

    public static FInt operator -( FInt one, int other )
    {
        return one - (FInt)other;
    }

    public static FInt operator -( int other, FInt one )
    {
        return (FInt)other - one;
    }
    #endregion

    #region ==
    public static bool operator ==( FInt one, FInt other )
    {
        return one.RawValue == other.RawValue;
    }

    public static bool operator ==( FInt one, int other )
    {
        return one == (FInt)other;
    }

    public static bool operator ==( int other, FInt one )
    {
        return (FInt)other == one;
    }
    #endregion

    #region !=
    public static bool operator !=( FInt one, FInt other )
    {
        return one.RawValue != other.RawValue;
    }

    public static bool operator !=( FInt one, int other )
    {
        return one != (FInt)other;
    }

    public static bool operator !=( int other, FInt one )
    {
        return (FInt)other != one;
    }
    #endregion

    #region >=
    public static bool operator >=( FInt one, FInt other )
    {
        return one.RawValue >= other.RawValue;
    }

    public static bool operator >=( FInt one, int other )
    {
        return one >= (FInt)other;
    }

    public static bool operator >=( int other, FInt one )
    {
        return (FInt)other >= one;
    }
    #endregion

    #region <=
    public static bool operator <=( FInt one, FInt other )
    {
        return one.RawValue <= other.RawValue;
    }

    public static bool operator <=( FInt one, int other )
    {
        return one <= (FInt)other;
    }

    public static bool operator <=( int other, FInt one )
    {
        return (FInt)other <= one;
    }
    #endregion

    #region >
    public static bool operator >( FInt one, FInt other )
    {
        return one.RawValue > other.RawValue;
    }

    public static bool operator >( FInt one, int other )
    {
        return one > (FInt)other;
    }

    public static bool operator >( int other, FInt one )
    {
        return (FInt)other > one;
    }
    #endregion

    #region <
    public static bool operator <( FInt one, FInt other )
    {
        return one.RawValue < other.RawValue;
    }

    public static bool operator <( FInt one, int other )
    {
        return one < (FInt)other;
    }

    public static bool operator <( int other, FInt one )
    {
        return (FInt)other < one;
    }
    #endregion

    public static explicit operator int( FInt src )
    {
        return (int)( src.RawValue >> SHIFT_AMOUNT );
    }

    public static explicit operator FInt( int src )
    {
        return new FInt( src, true );
    }

    public static explicit operator FInt( long src )
    {
        return new FInt( src, true );
    }

    public static explicit operator FInt( ulong src )
    {
        return new FInt( (long)src, true );
    }

    public static FInt operator <<( FInt one, int Amount )
    {
        return new FInt( one.RawValue << Amount, false );
    }

    public static FInt operator >>( FInt one, int Amount )
    {
        return new FInt( one.RawValue >> Amount, false );
    }

    public override bool Equals( object obj )
    {
        if ( obj is FInt )
            return ( (FInt)obj ).RawValue == this.RawValue;
        else
            return false;
    }

    public override int GetHashCode()
    {
        return RawValue.GetHashCode();
    }

    public override string ToString()
    {
        return this.RawValue.ToString();
    }

    #region PI, DoublePI
    public static FInt PI = new FInt( 12868, false ); //PI x 2^12
    public static FInt TwoPIF = PI * 2; //radian equivalent of 260 degrees
    public static FInt PIOver180F = PI / (FInt)180; //PI / 180
    #endregion

    #region Sqrt
    public static FInt Sqrt( FInt f, int NumberOfIterations )
    {
        if ( f.RawValue < 0 ) //NaN in Math.Sqrt
            throw new ArithmeticException( "Input Error" );
        if ( f.RawValue == 0 )
            return (FInt)0;
        FInt k = f + FInt.OneF >> 1;
        for ( int i = 0; i < NumberOfIterations; i++ )
            k = ( k + ( f / k ) ) >> 1;

        if ( k.RawValue < 0 )
            throw new ArithmeticException( "Overflow" );
        else
            return k;
    }

    public static FInt Sqrt( FInt f )
    {
        byte numberOfIterations = 8;
        if ( f.RawValue > 0x64000 )
            numberOfIterations = 12;
        if ( f.RawValue > 0x3e8000 )
            numberOfIterations = 16;
        return Sqrt( f, numberOfIterations );
    }
    #endregion

    #region Sin
    public static FInt Sin( FInt i )
    {
        FInt j = (FInt)0;
        for ( ; i < 0; i += new FInt( 25736, false ) ) ;
        if ( i > new FInt( 25736, false ) )
            i %= new FInt( 25736, false );
        FInt k = ( i * new FInt( 10, false ) ) / new FInt( 714, false );
        if ( i != 0 && i != new FInt( 6434, false ) && i != new FInt( 12868, false ) &&
            i != new FInt( 19302, false ) && i != new FInt( 25736, false ) )
            j = ( i * new FInt( 100, false ) ) / new FInt( 714, false ) - k * new FInt( 10, false );
        if ( k <= new FInt( 90, false ) )
            return sin_lookup( k, j );
        if ( k <= new FInt( 180, false ) )
            return sin_lookup( new FInt( 180, false ) - k, j );
        if ( k <= new FInt( 270, false ) )
            return sin_lookup( k - new FInt( 180, false ), j ).Inverse;
        else
            return sin_lookup( new FInt( 360, false ) - k, j ).Inverse;
    }

    private static FInt sin_lookup( FInt i, FInt j )
    {
        if ( j > 0 && j < new FInt( 10, false ) && i < new FInt( 90, false ) )
            return new FInt( SIN_TABLE[i.RawValue], false ) +
                ( ( new FInt( SIN_TABLE[i.RawValue + 1], false ) - new FInt( SIN_TABLE[i.RawValue], false ) ) /
                new FInt( 10, false ) ) * j;
        else
            return new FInt( SIN_TABLE[i.RawValue], false );
    }

    private static int[] SIN_TABLE = {
        0, 71, 142, 214, 285, 357, 428, 499, 570, 641,
        711, 781, 851, 921, 990, 1060, 1128, 1197, 1265, 1333,
        1400, 1468, 1534, 1600, 1665, 1730, 1795, 1859, 1922, 1985,
        2048, 2109, 2170, 2230, 2290, 2349, 2407, 2464, 2521, 2577,
        2632, 2686, 2740, 2793, 2845, 2896, 2946, 2995, 3043, 3091,
        3137, 3183, 3227, 3271, 3313, 3355, 3395, 3434, 3473, 3510,
        3547, 3582, 3616, 3649, 3681, 3712, 3741, 3770, 3797, 3823,
        3849, 3872, 3895, 3917, 3937, 3956, 3974, 3991, 4006, 4020,
        4033, 4045, 4056, 4065, 4073, 4080, 4086, 4090, 4093, 4095,
        4096
    };
    #endregion

    private static FInt mul( FInt F1, FInt F2 )
    {
        return F1 * F2;
    }

    #region Cos, Tan, Asin
    public static FInt Cos( FInt i )
    {
        return Sin( i + new FInt( 6435, false ) );
    }

    public static FInt Tan( FInt i )
    {
        return Sin( i ) / Cos( i );
    }

    public static FInt Asin( FInt F )
    {
        bool isNegative = F < 0;
        F = Abs( F );

        if ( F > FInt.OneF )
            throw new ArithmeticException( "Bad Asin Input:" + F.ToDouble() );

        FInt f1 = mul( mul( mul( mul( new FInt( 145103 >> FInt.SHIFT_AMOUNT, false ), F ) -
            new FInt( 599880 >> FInt.SHIFT_AMOUNT, false ), F ) +
            new FInt( 1420468 >> FInt.SHIFT_AMOUNT, false ), F ) -
            new FInt( 3592413 >> FInt.SHIFT_AMOUNT, false ), F ) +
            new FInt( 26353447 >> FInt.SHIFT_AMOUNT, false );
        FInt f2 = PI / new FInt( 2, true ) - ( Sqrt( FInt.OneF - F ) * f1 );

        return isNegative ? f2.Inverse : f2;
    }
    #endregion

    #region ATan, ATan2
    public static FInt Atan( FInt F )
    {
        return Asin( F / Sqrt( FInt.OneF + ( F * F ) ) );
    }

    public static FInt Atan2( FInt F1, FInt F2 )
    {
        if ( F2.RawValue == 0 && F1.RawValue == 0 )
            return (FInt)0;

        FInt result = (FInt)0;
        if ( F2 > 0 )
            result = Atan( F1 / F2 );
        else if ( F2 < 0 )
        {
            if ( F1 >= 0 )
                result = ( PI - Atan( Abs( F1 / F2 ) ) );
            else
                result = ( PI - Atan( Abs( F1 / F2 ) ) ).Inverse;
        }
        else
            result = ( F1 >= 0 ? PI : PI.Inverse ) / new FInt( 2, true );

        return result;
    }
    #endregion

    #region Abs
    public static FInt Abs( FInt F )
    {
        if ( F < 0 )
            return F.Inverse;
        else
            return F;
    }
    #endregion

}

public struct FPoint
{
    public FInt X;
    public FInt Y;

    public FPoint( FInt X, FInt Y )
    {
        this.X = X;
        this.Y = Y;
    }

    public static FPoint FromPoint( Point p )
    {
        FPoint f = new FPoint();
        f.X = (FInt)p.X;
        f.Y = (FInt)p.Y;
        return f;
    }

    public static Point ToPoint( FPoint f )
    {
        return new Point( f.X.IntValue, f.Y.IntValue );
    }
}

暫無
暫無

聲明:本站的技術帖子網頁,遵循CC BY-SA 4.0協議,如果您需要轉載,請注明本站網址或者原文地址。任何問題請咨詢:yoyou2525@163.com.

 
粵ICP備18138465號  © 2020-2024 STACKOOM.COM